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Abstract

Previous work in the Kerr group has shown the success of donor-acceptor cyclopropanes
as substrates in a variety of synthetic reactions; this document will apply the use of donor
acceptor cyclopropanes in various synthetic reactions. This was done using a 2-
substituted 1,1-cyclopropanediester, in the Overman Rearrangement, which has yet to be
explored using DA cyclopropanes. Another useful DA cyclopropane is the novel
acetylene-bearing donor acceptor diester cyclopropanes which would be synthetically
useful in a wide variety of reactions. In particular, the Conia-ene cyclization occurred
intramolecularly with this alkyne DA cyclopropane with a large library of nucleophiles.
Finally, taking this acetylene-bearing DA cyclopropane, it was converted to the
hemimalonate version, and subjected to a ring-opening by azide as the nucleophile to
generate an alkyl azide; which then underwent a [3+2] dipolar cycloaddition with the
alkyne to form novel linearly fused tricyclic triazoles.

Keywords

Donor acceptor cyclopropanes, heterocycles, triazole, Click chemistry, cycloaddition,

Overman Rearrangement, Conia-ene cyclization, annulation, organic synthesis.
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1  Introduction to Donor Acceptor Cyclopropanes

1.1 Donor Acceptor Cyclopropanes

1.1.1 Structure and Bonding in Cyclopropanes

The highly strained cyclopropane ring was discovered back in 1881 by Freund, and has
been a widely used synthetic tool in chemistry for over a century.’ This is due to
cyclopropanes highly reactive nature, caused by the strain energy on this three-membered
ring system; this reactivity is analogous to the reactive nature seen in olefins.
Cyclopropanes have been known to react with a wide variety of electrophiles,
nucleophiles, and radical species and therefore have become a useful tool in creating new

and exciting chemical transformations.

The concept of bent bonds in cyclopropanes was first described by Ingold in an effort to
explain the stabilitiy of tetrahedrane (Figure 1.1).> The strongly bent bonds in
tetrahedrane lead to poor orbital overlap and weak C-C bonds.?

H

Figure 1.1 Structure of Tetrahedrane

The reactive qualities of a cyclopropane ring can be attributed to its unique chemical and
physical properties. In terms of physical properties, a cyclopropane ring significantly
deviates from the ideal 109.5° tetrahedral bond geometry value for a sp® carbon; the bond
angles in a cyclopropane ring being only approximately 60° (Figure 1.2). This angular
ring strain accounts for approximately 118 kJ/mol of energy in a cyclopropane ring. It is
this strain on the ring that causes the cyclopropane to react similarly to olefins.*
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Figure 1.2 Angle Strain of a Cyclopropane

This angular strain present in each cyclopropane must be alleviated by increasing the
amount of p character in the ring. Since bent bonds would lead to poor overlap and weak
C-C bonds, Forster, Coulson and Moffitt (FCM) came up with a model to describe the
bonding within a cyclopropane ring (Figure 1.3). FCM calculated that the C-C bonds
contained more p character, while the C-H bonds contained more s character. In order for
this to be possible the C-C bonds must be shorter and have hybridization values of
approximately 80 % p and 20 % s character; and the C-H bonds must have hybridization
values of 70 % p and 30 % s character. These results were first based off of
computational studies, and later further proven by experimental ones. From this model of
bonding (Figure 1.3), the overlap of the p orbital’s are relatively off centered and
ineffective, thus resulting in the cyclopropanes unique reactivity in comparison to a
standard alkane. Ultimately the FCM model explains that weakening the C-C bonds,

along with the strain of the three-membered ring, leads to overall bond weakening.**

Figure 1.3 Forster-Coulson-Moffit Model of a Cyclopropane Ring

These weakened bonds are what make cyclopropane a more reactive substrate; when
compared to other cycloalkane systems, the reactivity of cyclopropane is much more
reactive than a typical alkane bond (355 vs. 255 kJ/mol). This increase in reactivity
makes cyclopropanes great substrates for reactions with nucleophiles, electrophiles and

radical species, much like olefins.**
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Within a cyclopropane ring there are three different types of strain. Previously mentioned
was angular strain (Figure 1.2); Figure 1.5 illustrates the other two types of strain, caused
by the repulsions of electrons between different substituents, known as torsional and
steric strain. Torsional strain occurs in the ring system as different substituents eclipse
one another. Similarly, steric strain occurs in highly substituted cyclopropane rings and
therefore repulsions occur when the neighboring atoms are too close together (Figure
1.4).%

X
[

b,
1/
2

Figure 1.4 Torsional/Steric Strain of Cyclopropanes

1.1.2 Types and Reactivity of Cyclopropanes

Even with large amounts of strain energy, cyclopropanes are often rather slow to react.
Previous research has suggested that cyclopropanes need to be activated in order to
increase the reactivity rates. This activation usually comes from a combination of
electron withdrawing substituents and/or electron donating substituents attached to the
cyclopropane ring. Activated cyclopropanes have become synthetic building blocks in
organic chemistry and allow for the generation of new carbon-carbon bonds. Based on
the different types of activation sources, there are three main types of activated

cyclopropanes:®’

I.  Acceptor Cyclopropanes
Il.  Donor Cyclopropanes

1. Donor-Acceptor Cyclopropanes

Acceptor cyclopropanes contain electron withdrawing functional substituents (EWG)
which allows for the stabilization of a negative charge generated after nucleophilic ring

opening on the vicinal carbon (Scheme 1.1A). Trapping with an electrophile can lead to
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the homo-Michael product 1-3. Donor cyclopropanes, are the opposite, in that they
contain electron donating functional groups (EDG), which allows electron density to be
distributed throughout the ring and therefore increases the nucleophilicity of the
cyclopropane ring (Scheme 1.1B). Therefore in the presence of an electrophile,
nucleophilic attack by cyclopropane 1-4 can occur to give a carbocation intermediate 1-5.
This charge is stabilized by the EDG which can be further reacted with a nucleophile to
give 1-6.%7

EWG

R G-

Nu~ 11 1-2 1-3

EDG [ RN Nu

B ’/\A —  ~ | | M, E/\)\EDG
£ 1-4 1-5 16
EDG EDG EDG H
Lewis Acid 8" Nu—H
C e [ / —_ > Nu)\/kEWG
EWG or heat EWG &
1-7 1-8 1-9

Scheme 1.1 The Reactivity of Cyclopropanes

The third and final type is donor-acceptor (DA) cyclopropanes, which contains both
electron donating and electron withdrawing functional groups; this type of cyclopropane
is considered the most synthetically useful of the three types due to the formation of a
1,3-dipole (1-8) which can readily react with nucleophiles (Scheme 1.1C). Under Lewis
acid conditions, vicinal DA cyclopropanes are doubly activated and can undergo formal
retro-aldol rearrangements to create a 1,3 dipole synthon for homo-Michael reactions.
The vicinal ED and EW groups on cyclopropane 1-7 allows for the stabilization of

possible ring opening (1-8) and therefore nucleophile attack can occur.’
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DA cyclopropanes can be divided into two separate categories: geminal and vicinal DA
cyclopropanes (Figure 1.5). Geminal refers to the substituents residing on the same
carbon, where as vicinal refers to them being on adjacent carbons. Geminal DA
cyclopropanes are not commonly used in synthetic chemistry due to the substituents on
the cyclopropane ring not being able to act in a synergic manner. Vicinal DA
cyclopropanes exhibit an electron push-pull relationship, therefore having reactivity
analogous to a 1,3-dipole, making them more synthetically useful than geminal DA
cyclopropanes.®’” Geminally substituted DA cyclopropanes however, do display
important structural significance for amino acid synthesis, as well as in the synthesis of

phytohormone ethene.?

D A A
Geminal D Vicinal
DA cyclopropane DA cyclopropane
A
)\\ Lewis Acid D\/\/\/ A

Figure 1.5 Geminal and Vicinal DA Cyclopropanes and the Mode of Reactivity

1.1.3 Synthesis of DA cyclopropanes
1.1.3.1 History of synthesis of DA cyclopropane

The synthesis of cyclopropanes centers mainly on carbene chemistry, as four of the six
major methods involve these substrates (1-4, Figure 1.6%). Three of the four carbene
methods involve a direct [2+1] cycloaddition, changing the location of the donor and
acceptor functionality groups between the carbene and the olefin (1-3).
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A-CH + D D—CH + A
x T

A
7 .. D

A

X
5
0 / \ A .
D +A D+ | < X-CH+#

A

X
Figure 1.6 The various ways to make DA Cyclopropanes

Path 1 involves the reaction between an acceptor-substituted carbene with an electron-
rich olefin, whereas path 2 is the opposite, involving a donor-substituted carbene with an
electron-poor olefin. The use of an olefin containing both the donor and acceptor
functional groups on it can undergo methylenation with a carbene to give a DA
cyclopropane seen in path 3. For paths 2 & 3, the use of the donor-substituted carbene, as
well as methylenation of a DA-olefin, is rather difficult and not very efficient due to the
low reactivity of these substrates. Using a halogenated cyclopropane (path 4) as a
precursor to the target molecule has increased the scope of DA cyclopropanes. This route
goes through a halocarbene, which reacts with an olefin to give an acceptor
cyclopropane; donor functionalities can substitute the halogen group by treatment with
various nucleophiles. The use of cyclopropenes by activation with electron withdrawing
substituents is also of lesser importance due to the involvement of starting material which
is not readily available (path 5). The very first synthesis of DA cyclopropanes (route 6)
occurred by a Michael addition of a nucleophile followed by an intramolecular
substitution to create the three-membered ring. This process could be described as an

intramolecular Sy ring closure reaction. Since all carbon atoms were already assembled in
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the starting material, and the reaction was not general enough and therefore has not

received very much attention.®®

The easiest and most convenient source of carbenes is diazoalkanes, which decompose in
the presence of a metal catalyst to form reactive carbene complexes (carbenoids) that can
then undergo [2+1] cycloadditions with olefins to yield the desired cyclopropane. Using
acceptor-substituted diazoalkanes (diazocarbonyls) can yield DA cyclopropanes when

reacted with electron rich alkenes (Figure 1.7°). ®*

EDG , R._COMe Metal /\C0Me
N— T Catalyst S
N, EDG R

Figure 1.7 The use of Diazo-Species to form DA Cyclopropanes

1.1.3.2  Simmons-Smith Cyclopropanation

A very well known cyclopropanation in organic chemistry is the Simmons-Smith
cyclopropanation. This reaction was named after the discoverers H.E. Simmons and R.D.
Smith, who back in 1958, were the first to use dilodomethane (CH.l,) in the presence of a
zinc-copper amalgam to stereospecifically convert an un-functionalized alkene into a
cyclopropane (Scheme 1.2).° The reaction mechanism goes through a three-centered
“butterfly type” transition state 1-17 (Scheme 1.3'), and agrees with both theoretical
studies as well as the stereochemical outcome produced for all reactions. Since 1958,
many modifications have been made, the major one being by Furukawa in 1966, who
replaced the Zn-Cu system with diethyl zinc, making the reaction much less complex
(Scheme 1.4%).%°
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Scheme 1.2 The Simmons-Smith Cyclopropanation
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Scheme 1.3 The Proposed Mechanism for the Simmons-Smith Cyclopropanation
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Scheme 1.4 The Simmons-Smith Cyclopropanation with Furukawa Modifications
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1.1.3.3  Corey-Chaykovsky Cyclopropanation

Another unique and commonly used cyclopropanation is the Corey-Chaykovsky reaction.
Developed in 1962 by E. J. Corey and M. Chaykovsky, it was discovered that the
deprotonation of trimethylsulfoxonium halides could occur using powdered sodium
hydride, under nitrogen atmosphere at room temperature, thereby generating a
dimethylsulfoxonium methylide (Scheme 1.5'). When this ylide 1-25 was mixed with
a,B-unsaturated carbonyl compounds 1-26, and a conjugate addition followed by the

expelling of the ylide (1-27) produced cyclopropane 1-28 as the product (Scheme 1.6).**

0
o oN R
| 2
St NaH | & /éi R1/\)LR2 R,
H3C CHCH3 DMSO H3C CH(3:H2 3C CHC3:H2 > O
-H,
1-21 1-22 1-23 1-24

Scheme 1.5 General Reaction for the Corey-Chaykovsky Cyclopropanation

0
H,C— s+‘\ R & O
R
HyC' Y R1/§/)kR2 . ‘3/ % 2
1-25 1-26 127 Ri

1-28

Scheme 1.6 Proposed Mechanism of the Corey-Chaykovsky Cyclopropanation

The Corey-Chaykovsky cyclopropanation is the synthesis used for this thesis work, as it
is the most cost effective and efficient synthesis of DA cyclopropanes. This is due to the
absence of catalyst, mild conditions, high vyields and readily synthesized starting

materials.
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114 Applications of Donor Acceptor Cyclopropanes

To this day, DA cyclopropanes are extremely useful for synthetic chemists as they can be
valuable building blocks in a wide variety of natural product syntheses. In particular, DA
cyclopropanes are of substantial importance in the area of ring-opening/annulation
reactions. This has allowed for easy access to a variety of synthetic products such as
piperidines  1-31'%,  tetrahydropyrans  1-33",  cyclohexanes  1-35"  and
tetrahydrocarbazoles 1-37," respectively (Scheme 1.7). These reactions offer a suitable

way to access a variety of carbocyclic and heterocyclic products.

R H3CO,C CO,CH,
S )\ HsCOL_ COLHs | enis acid =
PN K
R R™ 'N° R
1-29 1-30 L
Ph
1-31

H;CO,C CO,CHs

R
/ HiCOC. COCHy ré(
ewIs acCl
= OH K —_—
R7 07 R

R
1-32 1-30 1-33
H3;CO,C._ _CO,CH R
CI\)L/TMS sz 5 Zes Lewis acid i;/
—_— >
R
1-34 1-30 H;CO,C CO,CH,
1-35
R
o TN HsCOC( _COCH, o COCH,
P g — T Lewis acid R"—: X A CO,CH;
R' R Z~N
1-36 1-30 R'
1-37

Scheme 1.7 Reactions of DA Diester Cyclopropanes

Scheme 1.7 illustrates a wide range of organic substrates that can be easily functionalized
by the use of DA cyclopropanes. In the Kerr group, methodologies have been developed

for a variety of annulation reactions described in Scheme 1.7.

10
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These reactions have allowed for the formation of a diverse library of organic

compounds, some of which have been directly applied to natural product synthesis, such

as Isatisine A'® and Allosecurinine®’. These natural products were

synthesized in the Kerr

lab by A. Karadeolian and A. Leduc, respectively (Schemes 1.8 & 1.9). DA

cyclopropanes have been and will continue to be one of organic synthesis greatest

building tools.

H;CO,C_ CO,R

H;CO,C CO,R

1-40

Scheme 1.8 Synthesis of Isatisine A
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Scheme 1.9 Synthesis of Allosecurinine

11

OH
OH OH

isatisine A
1-41

//OH

_—
e
—_—

allosecurinine
1-46

www.manaraa.com



1.2 The 1,3-dipolar Huisgen Cycloaddition & Click Chemistry
1.2.1  History of the 1,3-dipolar Huisgen cycloaddition

Back in 1933, Linus Pauling, was the first to discover the dipolar nature of azides.'® L.
Pauling describes methyl azide as having two distinct structural formulas, one in which
the nitrogen atoms form a ring and the other as an open chain. Based off of the crystal
structure of sodium azide, it was determined that the azide ion obtains a linear
configuration and this structure can be extended to organic azides as well. Based off of

these findings, Pauling determined that methyl azide is in fact a linear configuration.*®

Since then, many discoveries about 1,3-dipoles have been made, especially by Rolf
Huisgen, who has extensively studied 1,3-dipoles both mechanistically and
kinetically.**? In 1963, R. Huisgen, described 1,3-dipoles as an a-b-c system, where a
must own an electron sextet, in other words, have an incomplete valence shell and a
formal positive charge; b can remain neutral; and ¢ must have a formal negative charge
cause by a pair of shared electrons. The 1,3-dipole can then undergo many reactions, the
most popular one being the cycloaddition.

Cycloadditions are classified by the number of new c-bonds formed and/or in relation to
the size of the newly formed ring. Generally cycloadditions occur from the breaking of
two m-bonds to form two new o-bonds. Typically a [3 + 2] cycloaddition leads to an
uncharged five-membered ring, which will not occur with stable reactants containing full
octets and no formal charges. This is where the 1,3-dipole can be used to overcome such
challenges.’® In order to understand the mechanism behind the 1,3-dipolar cycloaddition,
it must be compared to the mechanistic interpretations of other cycloadditions. The key
investigation with the 1,3-dipolar cycloaddition, is determining if the two new o-bonds
close simultaneously or one after the other, to form the five-membered ring. Based on
experimental findings by Huisgen, the favorable mechanism is one which is a concerted
mechanism, with a cyclic electron shift. Similar one-step reactions of this type include
the Diels-Alder and the Claisen/Cope rearrangements. The energy profile of these one-
step reactions, contain only a single activation peak between the reactants and the

products.?°

12
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Figure 1.8 The 1,3-dipole described by Huisgen

When a 1,3-dipole is combined with a multiple bond system (d-e), Figure 1.8%°, this
successfully forms a five-membered ring, and the dipolarphile can be either a double or
triple bond. A 1,3-dipolar cycloaddition contains a zwitterionic all-octet resonance
structure, which can display both electrophilic and nucleophilic activity making it
ambivalent. The 1,3-dipole is more stable if atom b can share an unpaired set of electrons

with atom a to form an additional bond.?

An excellent example of a stable 1,3-dipole is the organic azide. As previously describe,
the resonance structure was determined back in 1933 by L. Pauling, however the first
preparation is dated back to 1884 by P. Griess. This azide molecule, having three
adjoining nitrogen atoms with two opposing charges, was a fascinating discovery as not
only is it stable, it is also easily available to react in a variety of reactions, and now has
developed into what is known as azide chemistry.™

A common Huisgen 1,3-dipolar cycloaddition would be between azides and alkynes to
give the five-member triazole ring. Azides serve as a reliable way to introduce a nitrogen
substituent into a substrate and are desired reagents for click chemistry, as they are
extremely stable towards aqueous and aerobic synthetic conditions.?

1.2.2 Click Chemistry

The term “click chemistry” was first coined in 1998 by K. B. Sharpless, and since then
numerous reviews and research has been done in this field of chemistry. The term “click
chemistry” refers to a general method of generating products by joining smaller subunits
in a single transformation. This chemistry is commonly seen through-out nature to link

together subunits through C-C linkages.*

13
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In the past, in order for a reaction to be considered click chemistry, it had to follow a
specific set of criteria. The criteria was that the reaction must be modular, give
moderately high yields, be wide in scope, generate only inoffensive byproducts which
can be removed by non-chromatographic purification methods, and be stereospecific. The
reaction conditions and products were required to be stable under physiological
conditions, insensitive to oxygen and water, and must use easily available starting
material and reagents, contain water or an easily removed solvent (or no solvent at all),
and simple product isolation. Click chemistry reactions have been known to be strongly
exothermic, highly tolerated and often accelerated by the presence of water. Today, click
chemistry still follows this set of criteria, however there are many reactions which follow
most (not all) of the criteria, and are still considered a part of click chemistry

community.?

There are many different types of click reactions, some of the most common examples

include; #2224

I.  Cycloadditions of unsaturated species, especially 1,3-dipolar cycloadditions as
well as the Diels-Alder reaction

Il.  Nucleophilic substitution chemistry, mainly ring-opening reactions of strained
heterocyclic compounds, giving the formation of new carbon-heteroatom bonds

(epoxides, aziridines, aziridinium ions, episulfonium ions)

1. Non-aldol carbonyl chemistry, such as thio-urea, oxime ether, hydrazone,

aromatic heterocycles, and amide formations

IV. Additions to carbon-carbon multiple bonds, epoxidations, aziridinations,
dihydroxylations, sulfenyl halide additions, and Michael additions of Nu-H

reactant

14
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1.2.3 Copper-Catalyzed Azide-Alkyne Cycloaddition

As previously described, there are many different types of click reactions, new ones
being discovered every year. The most well-known of all the click reactions would be the
Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC). This click reaction was
published back in 2001 by Meldal, and received a lot of attention from Sharpless and
other chemists immediately.”® The CuACC click reaction fulfills all the requirements for
a click reaction, and has enormous potential in biological, chemical and material
sciences.”’ The Azide-alkyne Cycloaddition (ACC) is highly relevant for biological
applications, however the use of copper in these reactions, can be toxic for living
organisms. The search for copper-free ACC reactions have been developed, but the
downfalls include higher temperatures, slow reaction times and poor regioselectivity
(scheme 1.10).

N N
A _N"N-RZ | N” N-R?

1-47 1-48 R R
1-49 1-50

Scheme 1.10 Azide-Alkyne Cycloaddition (AAC)

The copper-catalyzed azide-alkyne cycloaddition, results in the formation of a five-
membered ring known as a triazole. Unlike its parent reaction, the Huisgen 1,3-dipolar
cycloaddition which is slow at the formation of triazoles at room temperature, the
addition of the copper-catalyst accelerated the reaction rate by a factor of 107, as well as
allowed the reaction to be done in an aqueous medium. CuUACC also produces only one
regioisomer of the triazoles, the 1,4-disubstitued triazole (1-50), whereas a standard
cycloaddition results in the formation of 1,4- and 1,5- regioisomers. Another great feature
of the CUACC reaction is the excellent yield of the 1,4-disubstitied 1,2,3-triazole formed
and the lack of effect electronics and sterics have on this reaction. The active copper
species used for these reactions varies, the most common being Cu(l), however Cu(0) and
Cu(Il) may also be used. Generally, Cu(ll) salts are used as they can be easily reduced to
Cu(l) in situ, in the presence of reducing agents. Cu(l) salts are less commonly used

because of the instability of the Cu(l) species under aerobic conditions.*
15
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Scheme 1.11 The Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC)

The main focus of CUAAC has been on the development of biocompatible methods in
order to accelerate the ACC reaction and improve regioselectivity without using
biohazardous material. The future of click chemistry, in particular the ACC reaction, is to
find methods of preparing these substrates in copper or transition-metal free

environment.?*

1-47 1-48 ﬂ\

Ru N=N
I MNR
\
R
1-50
N
SN
R R
1-49

Scheme 1.12 A Summary of the Azide-Alkyne Cycloadditions®
The success of this reaction was due to its high yielding, robust, and suitable for
biomolecular ligation properties. The triazole product formed is chemically inert to many

reactive conditions, such as hydrolysis, oxidation and reduction.?

So far, the benefits of the CUACC reaction have made an enormous effect on click
chemistry thus far. Some biological applications of the CuACC reaction include the

discovery of Amprenavir, through combinatorial screening using CUACC (Figure 1.9%).
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Amprenavir is a HIV-protease inhibitor which has been clinically used since 1997. It

prevents HIV-proteases from cleaving proteins, which inhibits the HIV virus.?

o R N=N
J A A

H Rn

Figure 1.9 Reterosynthesis of Inhibitors of HIV-Protease by CUAAC

Click chemistry is the new approach to being able to synthesize large and vast libraries of
building blocks for possible drug discovery. A computation study by Guida et al*’
suggest that the pool of “drug-like” compounds could be as large as 10%. In order to be a
‘drug-like’ compound, the compound must have less than 30 non-hydrogen atoms, be no
more than 500 Daltons in size, contain only H, C, N, O, P, S, F, Cl and Br, and be stable
in the presence of oxygen and water. Currently of the 10 compounds out there, only
around 10" compounds have been discovered to fulfill these criteria. Click reactions
could be the new frontier for being able to easily and relatively quickly way to be able to

discovery more ‘drug-like’ compounds.?®

1.24 History and Uses of Triazoles

As previously described the copper (I)-catalyzed click reaction between an azide and a
terminal alkyne leads to the formation of the 1,2,3-triazole moiety. This motif (Figure
1.10), has been well studied for its biologically active nature. This click reaction has been
a key tool in the mass formation of this triazole scaffold, due to the high degree of
reliability, specificity, and biocompatibility of the starting reactants. This specific click
reaction is the reason that click chemistry is such a powerful tool for drug discovery and
the synthesis of drug candidates.?

17
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Figure 1.10 The Triazole Motif

The importance of the triazole moiety in drug candidates has been seen prior to the
discovery of click chemistry. Over 7000 triazole containing compounds were reported
before the initial copper-catalyzed click reaction was discovered. In medicinal chemistry,
triazoles have shown to be stable towards acid and base hydrolysis, as well as under
oxidative and reductive conditions. This indicated the high aromatic stability of the
triazole moiety. Triazoles also are quite resistant to metabolic degradation, making them
perfect substrates for drug candidacy. A well known triazole containing compound would
be Tazobactam (Figure 1.11), a B-lactamase inhibitor, which in combination with the
antibiotic piperacillin, is commonly known as Tazocin; a treatment against many gram

positive and gram negative pathogens.?

The triazole moiety has proved to be a useful tool in improving pharmacokinetic
properties of desired drugs. Overall the triazole scaffold can be found in a number of
biologically active compounds, and has been shown to exhibit anti-HIV properties, as
well as in antibacterial, antibiotic and antiviral activities.?® By linking a triazole moiety to
a drug core, it can increase a variety pharmacokinetic factors, such as with
cephalosporins which is endowed with good oral availability when linked to a triazole
moiety (Figure 1.11%°). Antiviral and cytotoxic properties have been reported for the

triazole, making it a useful analogue for pyrimidine nucleosides.”

o s NH,
w0 U
S/ — N
o} , FN HO,
7 N. .| H
HO o) N N N N S
X7 NH, o 8 NH
N N COOH o /[ N
HO X N~ Tazobactam g N X~ N

COOH

Pyrimidine nucleoside Cephalosporin core

analogue

Figure 1.11 Different Biologically Active Substrates containing the Triazole Moiety
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1.3 Description of Thesis

The work described in this thesis can be divided into three chapters, all of which focus
around DA cyclopropanes and the various ring-opening reactions that can occur with
them. The second chapter will be an exploration of the Overman rearrangement,
involving the synthesis of an allylic alcohol into an acetimidate, followed by a [3,3]-

sigmatropic rearrangement known as the Overman Rearrangement. %2

CCly

ol
CCls O
OH ClsC—= CA CI3C)J\NH

Base ) Lewis Acid o )\ N
Dry Solvent Dry Solvent Ph
H;CO,C \/ H3COZCQS / o
Ph Ph H3CO,C
1-51 1-52 1-53 1-54

Scheme 1.13 Chapter Two: The Overman Rearrangement

The third chapter will focus on the use of DA cyclopropanes, in the Conia-ene reaction,
as well as the investigation into the different types of reactivity these DA cyclopropanes

have with various different types of Lewis Acids.*®

O CO,CH;
\ ()
N CO,CH,
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1-56 O \
A N
H
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CO,CHy 1-57
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1-59
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Scheme 1.14 Chapter 3: The Investigation into DA Cyclopropanes and the Conia-
ene/Annulation Reaction
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Finally, the fourth chapter will focus on the synthesis of a wide variety of substituted

triazole compounds, made by the tandem ring-opening and catalyst-free click reaction of

our DA cyclopropane with sodium azide.**

\\ NH4C| o) Chemlstry \ N COong
R 2-MeO(CH,),0H:H,0 OCHj
CO,CHjy N
CO,H 3
1-60 1-61 1-62

Scheme 1.15 Chapter 4: The Catalyst-Free Tandem Ring-Opening and Click

Reaction of an Acetylene-Bearing Donor Acceptor Cyclopropanes
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2  Using DA Cyclopropanes in the Investigation with the
Overman Rearrangement

2.1 Introduction

The Overman Rearrangement is a thermal [3,3]-sigmatropic rearrangement of an allylic
trichloroacetimidate to an allylic trichloroacetamide (Scheme 2.1). This reaction was
originally reported in 1974 as the rearrangement of allylic alcohol 2-1 to the
corresponding amine 2-3.! These allylic amines can be synthetically useful for the
construction of a variety of biologically active nitrogen-containing molecules such as
unnatural amino acids, antibiotics and alkaloids. The transformation was the first of its
kind, for making these types of compounds, and is stereo- and regio-specific. The
Overman rearrangement proceeds similar to typical [3,3]-sigmatropic rearrangements and
it is believed that it occurs in a chair-like transition state, allowing for chirality transfer to

occur.t®
CCly jfla
Cl,C—=N
OH cat. NaH =®* g]!ﬁjr;(e . /O\/LNH
R)\/\R. THF R KJ/ R' R R'
2-1 2.2 2-3

Scheme 2.1 The Overman Rearrangement

The first reported example of a [3,3]-sigmatropic rearrangement was back in 1912,
discovered by R. L. Claisen and today is well known as the Claisen rearrangement. It has
become a powerful tool for forming new carbon-carbon bonds. [3,3]-sigmatropic
rearrangements are a unique class of pericyclic reactions involving the movement of a
sigma-bond from one place to another during the reaction course. It is the chair-like
transition state (Scheme 2.2) that dictates the resulting double bond to favor the trans (E)
geometry over the cis (Z), due to the stability of substituents being in the equatorial

position on the chair.*®
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Scheme 2.2 The Transition State of the Overman Rearrangement

Donor-acceptor cyclopropanes have been well studied and reported in a large number of
synthetic reactions. The Overman rearrangement has yet to be investigated with DA
cyclopropanes as a substrate. The similarity of DA cyclopropanes to olefins supports the
hypothesis that these cyclopropanes would be able to successfully undergo the Overman

Rearrangement (Scheme 2.3).

B ccl, | o
NH
P 0~ SNH CI30J\NH
Cl,c” Y0 Lewis Acid
— — R
Dry Solvent
HsCOC™ "\ HyCO,C HyCO,C
R
27 - 27~ 2-8

Scheme 2.3 The Initial Research Hypothesis of the use of DA Cyclopropanes in the
Overman Rearrangement

2.2 Results and Discussion
2.2.1 Synthesis of the Acetimidate Intermediate

The substrate 2-phenyl 1,1-cyclopropanehemimalonate was chosen as the ideal starting
material for the initial studies of this project due to the success with this substrate in
previous DA cyclopropane reactions. In the efforts towards the Overman rearrangement
using DA cyclopropanes, alcohol 2-11 had to be synthesized from 2-9, the cyclopropane
hemimalonate (Scheme 2.4). Substrate 2-11 was synthesized through a two-step, one-pot
procedure, forming the mixed anhydride 2-10, and then reducing it to give the desired
alcohol 2-11. After an exhaustive search for modifying the temperature, equivalents, base
and solvent, the ideal conditions were found for a scalable synthesis of the alcohol as

seen in Scheme 2.4.%7
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P o o
HsCO.C_COH  CI7 OBt |.co,c L NaBH, (3 equiv.) 3C02& /—OH
DIPEA THF O "OEt Isopropanol
B ——— R ———
9.9 PP 110°Ctort Ph -10°Ctort 211 PN
2-10 84% over two

steps

Scheme 2.4 Synthesis of the Cyclopropyl Alcohol 2-11

The synthesis of acetimidate 2-12, was achieved using the initial conditions done by

Overman (Scheme 2.5), involving trichloroacetonitrile and sodium hydride.l'3

HN
CCl
H3;CO,C OH 3

s X Cl,C—C=N H,CO,C —O

Ph NaH K
dry ether Ph
2-11 0 2-12
67%

Scheme 2.5 Synthesis of the Cyclopropyl Acetimidate 2-12

2.2.2 Investigation into the Homo-Overman Rearrangement using DA
cyclopropanes

With the desired starting material in hand, the next step was to find the ideal conditions to
promote the Overman rearrangement with the DA cyclopropane 2-12. Table 2.1 shows
the investigation of this reaction, involving assortment of different reaction conditions.
Initially the first reaction done used the very first Overman rearrangement conditions
which yielded no formation of product (entry 1). Next the affect of Lewis acids on the
reaction was investigated; starting with scandium triflate, the reaction was done initially
at room temperature which resulted in trace product formation (entry 2). The product
observed was not the amide 2-13, as predicted, however the result from an in situ
lactamization occurred to give product 2-14. Using similar conditions to entry 2, the

temperature was increased for entry 3, leading to only decomposition.
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Table 2.1 Optimization of the Overman Rearrangement

Cl,e” S0 Lewis Acid  C¢ NH 0PN
Dry Solvent Ph
H3CO,C HiCO,C Ph
212 2-13 214
Entry Catalyst Conditions Time Yield (%) Compound

(10 mol %)  (solvent, temperature) #

1 None Toluene reflux 3h - -
2 Sc(OTH); Toluene rt 2h Trace 2-14

3 Sc(OTf); Toluene 65°C 3h - -
4 Sc(0THf)3 Toluene rt-65°C  2d Trace 2-14

5 Sc(OTf); CHCl, rt 2h - -
6 Sc(OTH); CH3CN rt -reflux 1d Trace 2-14
7 Sc(OTH); CH3CN reflux 1d Trace 2-14

8%  Sc(OTf);, DBU  Toluene reflux 1d - -

9° Sc(OTf); CH5CN rt 1d - -
10 Sc(OTH); Toluene rt 3d Trace 2-14

11 Yb(OTHf); CHCl, rt 7h - -
12 TiCl, DCE reflux 1d Trace 2-13
13 TiCl, DCE reflux 1d 19% 2-13
14° BF;OEt; DCE reflux 1d Trace 2-13
15 BF;OEt, DCE 60°C 2h Trace 2-13

16 BF3;OEt, DCE reflux 1d - -

a: 1.1 equivalent of DBU used; b: reaction done in high pressure reactor at 13 kBar; ¢: 1.0 equivalent of catalysts used

Entry 4 explored the same conditions however starting at room temperature and

eventually increasing the heat. This also gave product 2-14, however only trace amounts.

Entries 5-6 explored the use of different solvents, one yielding no product, the other trace

amounts. The use of acetonitrile as a successful solvent, lead us to explore varying

temperatures however both resulted in only trace product of 2-14 (entries 6-7).
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Entries 8 and 9, explored other conditions; one involving a base (entry 8) the other with
the use of a high pressure reactor (entry 9). Both reactions lead to no product and only
decomposition. Entry 10 mimicked the successful conditions from entry 2 this time
leaving the reaction for numerous days. The increase in reaction time did not increase the
yield, and only trace product 2-14 was isolated. Switching to different Lewis acids, entry
11 employed the use of ytterbium triflate, which even at room temperature gave
decomposition. Exploring more Lewis acids, entries 12 and 13 used TiCl,, which was
successful in the formation of product 2-13. Initially only trace amounts of product 2-13
were formed (entry 12), however when the reaction was increased in amount of starting
material used, a definitive yield of 19% was isolated. Finally, entries 14-16, used the
Lewis acid BF;OEt,, which also gave trace amounts of product 2-13. Varying the
temperature, equivalents and size of the reaction did not aid in increasing the yield of

product formed.

The formation of two different products, one formed by only the Overman
rearrangement, the other formed by the rearrangement and an additional in situ
lactamization, can be explained best by the mechanism in Scheme 2.6. The main role in
determining if the reaction will continue to react and lactamize is with the coordination of
the Lewis acid to the ester functionality groups. When the Lewis acid has a strong
attachment to the carbonyl oxygen of the ester moiety, it will remain coordinated even
after the formation of the homo-allylic amide 2-13. This coordination allows for the
newly formed amide nitrogen to further react and attack the carbonyl carbon, therefore
forming the five-membered lactam ring 2-14. With other Lewis Acids (such as TiCl, and
BF3;OEt;) the coordination only occurs for the ring-opening, and therefore only the amide
product 2-13 is formed.
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Scheme 2.6 The Proposed Mechanism for the formation of Overman
Rearrangement Products 2-13 & 2-14

Although the Overman rearrangement did work with DA cyclopropanes, it resulted in
very low yields. After many attempts to improve this reaction, with very little success in
improving the yields, it was therefore decided that in our hands DA cyclopropanes were

not the best candidates for this intriguing [3,3]-sigmatropic rearrangement.
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2.3 Conclusions

In summary, we were only able to achieve small success with the use of DA
cyclopropanes as a new substrate in the Overman rearrangement. The result yielded
either a homo-allylic amide or a lactam ring; both products were only isolated in small
yields (< 20 %). In the future if modifications and improvements can be found, a library
of these compounds could possibly be made. These modifications would have to promote
the ring opening of the DA cyclopropane, possibly by changing the ester functionality

group to one which is more electron withdrawing.

2.4 Experimental

2.4.1 General Considerations

All solvents for routine isolation of products and chromatography were reagent grade.
Reagents used were purchased from Sigma Aldrich, Alfa Aesar, Caledon or VWR. All
reactions were monitored by thin-layer chromatography on 0.25 mm silica plates (60F-
254) visualizing under UV light and developed using acidic p-anisaldehyde stain. All
flash column chromatography was performed using silica gel (230-400 mesh) with
indicated solvents. *H and **C NMR spectra were recorded on either a 400 MHz or on a
600 MHz NMR spectrometer. Chemical shifts, multiplicity (s, singlet; d, doublet; t,
triplet; g, quartet; m, multiplet; br, broad), coupling constants in hertz (Hz), and number
of protons. HRMS were measured with electron impact (EIl) ionization and quadrapolar
mass analyzer. Melting points were determined using a Gallenkamp melting point
apparatus and was uncorrected. Infrared spectra were obtained using thin films on NaCl
plates using a Brunker Vector 33 FT-IR instrument and were reported in frequency of

absorption (cm™).
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2.4.2 Experimental Procedure and Spectral Data for Alcohol 2-11

0
J o o
HsCO,C. CO,H O OBt |h.co,c L NaBH, (3 equiv,) HeCO2G_/—OH
A DIPEA,THF KO OH Isopropanol X
9.9 PP -10°C to rt Ph -10°Ctort 2.11 Ph
2-10 84% over two

steps

To a flask containing dry THF, 1-methoxycarbonyl-2-phenylcyclopropanecarboxylic acid
(2-9) (1 equivalent) was added, and the reaction mixture was cooled to -10°C.
Diisopropyl ethyl amine (1 equivalent) was added and stirred at -10°C. After 15 minutes,
ethyl chloroformate (1.1 equivalent) was slowly added drop-wise over 5 minutes. The
reaction mixture was slowly warmed up to room temperature and after 3 hours NaBH, (3
equivalent) and Isopropanol were added. The reaction mixture was left stirring at room
temperature overnight (12-14 h). Water was added to the reaction mixture, and the
aqueous layer was extracted with EtOAc 3 times. The organic phases were combined and
dried with MgSQ,, filtered and the solvent was removed. The residue was purified by
flash column chromatography (gradient elution, EtOAc/Hexanes) to yield the desired

compound (2-11).

H3COC /—OH Methyl 1-(hydroxymethyl)-2-phenylcyclopropanecarboxylate (2-
K 11): Reagents employed: 1-methoxycarbonyl-2-

o phenylcyclopropanecarboxylic acid (2-9) (0.130 g, 0.600 mmol),

diisopropyl ethyl amine (0.125 mL, 0.720 mmol), ethyl chloroformate (0.064 mL, 0.670
mmol), THF, NaBH, (0.070 g, 1.80 mmol), Isopropanol; yield 84% (0.103 g, 0.499
mmol) as a white solid; Ry = 0.20, 30% EtOAc in hexanes; *H-NMR (400 MHz, CDCls):
8 =7.19-7.29 (m, 5H), 3.97 (d, J = 12.1 Hz, 1H), 3.58 (d, J = 12.1 Hz, 1H), 3.32 (s, 3H),
2.84 (br s, OH, 1H) 2.64 (t, J = 8.2 Hz, 1H), 2.02 (dd, J = 7.8, 5.5 Hz, 1H) 1.33 (d, J =
9.0, 5.1 Hz, 1H); *C NMR (100 MHz, CDCls) 6 = 172.6, 136.2, 129.1, 127.9, 126.7,

67.0,51.4,34.4,31.0, 16.6.
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2.4.3 Experimental Procedure and Spectral Data for Acetimidate 2-12

HN
CCl
H;CO,C OH 3

see X Cl,C—C=N H,CO,C —O

Ph NaH K
dry ether h
2-11 0°C 2-12
67%

Alcohol 2-11 (1 equivalent) was added to a flask containing ether and cooled to 0°C. To
the reaction mixture, sodium hydride (NaH, in 60% mineral oil) (1.1 equivalent) was
slowly added and stirred at 0°C. Once the formation of Hyg had ceased,
trichloroacetonitrile (1.2 equivalent) was slowly added drop-wise over 2 minutes. The
reaction was stirred at 0°C and warmed-up slowly to room temperature. Once evidence of
starting material was gone by TLC analysis (~3h) the reaction mixture was filtered
through a pad of Celite and the solvent was removed. The residue was purified by flash
column chromatography (30% EtOAc/Hexanes) to yield the desired compound (2-12).
Cl3C Methyl 2-phenyl-1-((2,2,2-trichloro-1-
H,CO,C —O - iminoethoxy)methyl)cyclopropanecarboxylate (2-12):
Reagents employed: Methyl 1-(hydroxymethyl)-2-
phenylcyclopropanecarboxylate (2-11) (0.100 g, 0.480 mmol),
NaH (in 60% mineral oil, 0.013 g, 0.530 mmol), trichloroacetonitrile (0.058 mL, 0.580
mmol), ether: yield 67% (0.114 g, 0.325 mmol) as a yellow oil; R; = 0.60, 30% EtOAc in
hexanes; 'H-NMR (400 MHz, CDCls): & = 8.35 (br s, 1H), 7.15-7.30 (m, 5H), 4.76 (d, J
=10.9 Hz, 1H), 4.47 (d, J = 11.3 Hz, 1H), 3.38 (s, 3H), 2.71 (t, J = 8.6 Hz, 1H), 2.13 (dd,
J=7.8,55Hz, 1H), 1.53 (dd, J = 9.4, 5.5 Hz, 1H).

31

www.manaraa.com



2.4.4 General Procedure and Spectral Data for the Homo-Overman
Rearrangement products 2-13 & 2-14

o)
NH
J cl CJ\NH ¢Cls 0
Cl,e” "0 8 0PN
_—
Ph
H5CO,C HyCO,C Ph
212 213 214

Methyl 2-phenyl-1-((2,2,2-trichloro-1-iminoethoxy)methyl)cyclopropanecarboxylate (2-
12) (1 equivalent) was dissolved in the solvent used, and the Lewis acid was added (10
mo 1%, unless otherwise indicated). The reactions conditions are as described in Table
2.1. Once reaction was complete, determined by TLC analysis, the reaction mixture was
quenched with water. The mixture was extracted three times with EtOAc, dried with
MgSO,, filtered through a pad of Celite and the solvent was removed. The residue was
purified by flash column chromatography (gradient elution, EtOAc/Hexanes) to yield the
desired compound (2-13 or 2-14).

O Ph  CO,CHs Methyl 2-methylene-2-phenyl-4-(2,2,2-
ClsC N trichloroacetamido)butanoate (2-13): colorless oil; Rf =
0.68, 30% EtOAC in hexanes; 'H-NMR (400 MHz, CDCls): = 7.40 (d, J = 7.0 Hz,
2H), 7.35 (t, J = 7.0 Hz, 2H), 7.30 (t, J = 7.6 Hz, 1H), 6.26 (d, J = 1.2 Hz, 1H), 5.63 (d, J
=1.2 Hz, 1H), 5.01 (dd, J = 8.2, 5.9 Hz, 1H), 3.76 (s, 3H), 3.08-3.00 (m, 2H).

CCl; O
%\)3: 3-Methylene-5-phenyl-1-(2,2,2-trichloroacetyl)pyrrolidin-2-one
O~ °N

(2-14): colorless oil; R; = 0.55, 30% EtOAC in hexanes; ‘H-NMR
(600 MHz, CDCl5): 8 = 7.40 (t, J = 7.0 Hz, 2H), 7.36 (d, J = 7.6 Hz,
1H), 7.33 (t, J = 7.0 Hz, 2H), 6.32 (t, J = 2.9 Hz, 1H), 5.69 (t, J = 2.4 Hz, 1H), 5.53 (t, J =
7.6 Hz, 1H), 3.40 (m, 1H), 2.94 (m, 1H).

Ph
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3  Donor-Acceptor Cyclopropanes in the Conia-ene Cyclization
Reaction

3.1 Introduction
3.1.1 The Conia-ene Cyclization Reaction

The Conia-ene reaction is an intramolecular ene reaction catalyzed by Lewis acids or
heat. Early work done by J. M. Conia and P. Le Perchec in 1975 indicated that these
reactions could only be done at very high temperatures, therefore limiting the synthetic
utility of this reaction in organic synthesis." The Conia-ene cyclization was originally
done using unsaturated carbonyl compounds to yield cyclic products (Scheme 3.1%). This
reaction is a well known tool in organic synthesis for carbon-carbon bond formation with
alkenes as well as alkynes.? There currently has been extensive work forming five-

membered rings, however much less research has been done forming larger ring

systems.’
R\ R Con_ia-e_ne R’ R
Q/go Cyclization qgo
N\
341 R 3-3
Tautomerizati;N\ R — /Ring Closure
Q)
<< H
3-2
Scheme 3.1 Conia-ene Cyclization
3.2 Previous work on the Conia-ene Reaction

Recently, the Kerr group has utilized the Conia-ene reaction in conjunction with DA
cyclopropanes to form a variety of hetero- and carbo-cyclic compounds (Scheme 3.2).
These reactions involve a nucleophilic cyclopropane ring-opening followed by a
subsequent Conia-ene reaction with the pendant alkyne moiety. This one-pot reaction has
lead to the facile production of piperidines 3-7°, tetrahydropyrans 3-10° and

tetrahydrocarbazoles 3-13° respectively.
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R CO,CHj
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- DCE, reflux
Z N R — & |\ S\ CO,CHs
R
Z N
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3413

Scheme 3.2 Precedents for the Conia-ene Reaction with DA Cyclopropanes

With growing success in the area of cyclopropane ring-opening and Conia-ene reactions,
the next investigation involved the use of a new DA cyclopropane. The nucleophiles 3-4,
3-8, and 3-11 all contained the acetylene group; this investigation explored the use of the
acetylene on the DA cyclopropane. This new substrate, an acetylene-bearing donor
acceptor cyclopropane 3-15 can be seen in Scheme 3.3.

Scheme 3.3 The Investigation of Acetylene-Bearing DA Cyclopropane in the Conia-
ene Reaction
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3.3 Results and Discussion
3.3.1 Synthesis of the Acetylene-Bearing DA Cyclopropane

In order to begin the investigation of the acetylene-bearing DA cyclopropane with a
variety of nucleophiles in the Conia-ene reaction, the DA cyclopropane 3-15 had to be
synthesized in a 5-step procedure.

Aldehyde 3-20, was synthesized by modifications to a known procedure’. A
Knovevenagel condensation of commercially available 2-methylbenzaldehyde 3-17,
followed by a Corey-Chaykovsky cyclopropanation® gave cyclopropane substrate 3-19.
Mono-bromination of 3-19, followed by oxidations gave the corresponding aldehyde 3-

20 over the two steps (Scheme 3.4).

. 1. NBS,BPO
Dimethyl malonate HaC 23 CH3 Benzene, reflux
CHO
L-Proline NaH 2. NMO CH30N
DMSO N C02CHs DMSO co.cH CO.CH
rt CO,CH; O T o

80 % 35 % COCH3  gver two steps CO2CH3
317 3-18 3-19

Scheme 3.4 Synthesis of Aldehyde 3-20

Aldehyde 3-20 could be homologated in one step using the O’hira-Bestman reagent 3-21,
which lead to the desired alkyne (Scheme 3.6).°

Q9
P—-OCH
\ 3
Me)gf OCH;
N,
CHO

3-21 X
CO,CHs K,COs, MeOH CO,CHs
CO,CH3 rt CO,CHs
3-20 88 % 3-15

Scheme 3.5 Synthesis of DA Cyclopropane 3-25
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3.3.2 Investigation into Conia-ene Cyclization

Based on previous success with Lewis acids and the Conia-ene reaction®®, the first
attempt with DA cyclopropane 3-15 started out with the Lewis acid zinc bistriflimide
(Zn(NTfy)2). The initial hypothesis was the formation of product 3-22, as a result from a
Conia-ene cyclization. The result obtained after a test reaction involving the Zn(NTf,),
with indole 3-15 as the nucleophile, gave a much different product 3-23. This newly
formed product is a result of an indole annulation with the acetylene-bearing DA
cyclopropane 3-15 (Scheme 3.7).

N X Zn(NTfy),
v DCE
N CO,CHj
CO,CH3 H;CO,C
3-14 3415 4"%, CO,CH;,
9[/0
=S Qo
N
H
3-23

Scheme 3.6 Preliminary Result for Nucleophilic Attack on the DA Cyclopropane

Although this newly formed product 3-23, was not initially the desired product, the core
of 3-23 is intriguing due to its similarity in a variety of natural products, including
Ellipticine (Figure 3.1). This natural product has been shown to exhibit antitumor and
anti-HIV activity.™

Lo
N =
H

Figure 3.1 Ellipticine
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Due to the potential use for this product 3-23 in natural product synthesis, the

investigation was altered to focus on the annulation product. The next step was to try and

optimize the conditions; Table 3.1 shows this investigation, involving a variety of

different reaction conditions. It is to be noted that four different products occurred during

this optimization; the annulation product 3-23, the non-aromatic product 3-24, the ring-

opened product 3-25, as well as in some cases the Conia-ene product 3-22.

Table 3.1 Results from the Optimization of the Annulation Reaction

HsCO,C H3CO,C H3CO,C
CO,CH,4 CO,CH,4 CO,CHj,
@* ;CHa OOO O‘O Da )
CO,CHs N N N v
3-14 3415 323 324 325
Entry  Catalyst (10 mol %) Conditions Results
1t Zn(NTf), DCE, reflux, 1.5 h 75% 3-23; 5% 3-24
2 Zn(NTfy), 1 drop TFA DCE, reflux, 2 h 25% 3-23; 11% 3-24
3 Zn(NTf,), 1 drop TFA DCE, reflux, 3 h 30% 3-23; 6% 3-24
4 Zn(NTf,), CH3CN, reflux, 2 h Trace 3-25; Decomp.
5 Zn(NTf), Toluene, reflux, 2h 56% 3-23
6 Zn(NTf,), CH,Cl,, reflux, 4h Decomposition
7 Sc(OTf); DCE, rt,3h 50% 3-25
8 Yb(OTf)3 DCE, reflux, 1d 75% 3-25
9 Zn(OTf), DCE, reflux, 1d Decomp.
10 Cu(OTf), DCE, reflux, 4 h SM, Decomp.
11 ZnBr; DCE, reflux, 2 h Trace 3-22; Decomp.
12 InBrs DCE, reflux, 4 h 45% 3-23; 32% 3-22
13 MnCl,4H,0 DCE, reflux, 1 d Trace 3-22, Decomp.
14! GaCls; DCE, reflux, 1 d 27% 3-23; Trace 3-22
15 Cis-PtCl,(PPhs3); DCE, reflux, 1d SM
16 Ca(NTf,), DCE, reflux, 1d SM
17° Ca(NTf,),, BusNPFg DCE, reflux, 1 d SM
18 AuCl;-DMSO DCE, reflux, 1 d SM
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Entry  Catalyst (10 mol %) Conditions Results

19°  Ag(TMS) AuCI(PPhs) DCE, reflux, 1 d SM, Decomp.
20 AuCl3(PPhg) DCE, reflux, 1 d SM
213 Cu(OTf), AuCl(PPhj) Toluene, refux, 1 d SM, Decomp.
22 Zn(NTf,), DCE, reflux, 6 h 40% 3-23; 5 % 3-24
23 Zn(NTf,), DCE, 155°C, 30 min Decomp.

uw

1:20 mol % 2: 5 mol % each 3: 20 mol % and 0.2 mol % respectively

To start the investigation, a variety of Lewis acids were thoroughly examined. Entries 1-6
explore the catalyst, zinc bistriflimide, with entry 1 giving the best result of a 75% yield
of the product 3-23, with only trace amount of the non-aromatic species 3-24. The
addition of TFA was done in the attempt to provide a proton source for rearomatization;
this was not successful, and resulted in a loss of yield of the desired product 3-23.
Switching to other polar aprotic solvents, with slightly different boiling points (entries 4
& 6), did not improve the results; using a non-polar solvent (entry 5) was successful at
obtaining product 3-23; however the yield did not increase from entry 1. From there a
series of different Lewis acids were tested (entries 7-10), and either gave ring opened
product 3-25, or starting material/decomposition. Since only ring-opened product was
made, this indicates that these particular Lewis acids used were not successfully able to
coordinate to the alkyne, and therefore were not able to proceed to the annulation
product. Moving forward we sought out to examine more Lewis acids commonly used in
our research. Entries 11-14 were unsuccessful in giving a high yields of the desired
product 3-23, however after further examination gave us a mix of 3-23 and the Conia-ene
product 3-22. This is not surprising as these Lewis acids used were previously used in our
lab for the Conia-ene reaction. Entries 15-17, used Lewis acids with evidence of
promoting a similar reaction cascade, however no products were formed and only starting

material remained.

It is known that gold salts can activate alkynes by coordination, thus began the
investigation into gold catalysts for entries 18-21."*"? Several different attempts were
done involving different gold catalysts, with different ligands and additives, and
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unfortunately none of the gold catalysts appeared to give any product, only starting
material remained. This could be due to the fact that the gold catalysts were not able to
coordinate to the esters, and therefore resulted in no ring opening to occur, and thus the

reaction itself could not proceed.

Returning back to zinc bistriflimide, the next attempt was to leave the reaction longer to
try and promote the non-aromatic species 3-24 to become the aromatic 3-23; however
this just lead to a decrease in yield of 3-23 overall. Finally entry 23, used microwave
conditions, and only gave decomposition and was the last attempt in the investigation.
After examining our efforts, the best results remain from entry 1, and these conditions
were therefore used in the efforts towards applying this reaction to a wide variety of

different nucleophiles.

3.3.3 Exploration into the Scope of the Annulation Reaction

The scope was initially done on a variety of substituted indoles. Entries 2 and 3 have
functional groups off of the indole nitrogen (R;). Both gave evidence of the desired
product 3-27 as well as side product of the Conia-ene reaction. Focusing on substitutions
at positions R, and Rj, the functional groups were varied in terms of the electronic
effects. Entry 4, gave a rather low yield of product 3-27, as well as some ring-opened
product as a mixture. Switching to electron-donating, the methoxy indole in entry 5, also
appeared to give annulation product as well as Conia-ene product, also as a mixture.
Entry 6 was not easy to separate, and was a mixture of different products. Entries 7-8,
were more electron-withdrawing functional groups, and gave only evidence of the Conia-

ene product with no annulation product being formed at all.
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Table 3.2 The Substrate Scope for the Annulation Reaction

Ro
R CO,CHg
2 A Nsz)
N CO,CH, DCE, reflux.1.5 h R
Ri (:02(:H3 R,
3-26 3-1 3-27
Entry Compound Ry R» R3 Yield Results
(%)
#

1 3-27a H H H 75 -
2 3-27b Bn H H - Trace Conia-ene
3 3-27c CHs H H 74 -
4 3-27d H Br H - Trace Ring Opened
5 3-27e H MeO H - Inseparable
6 3-27f H OH H - Inseparable
7 3-27¢ H H Cl - 45% Conia-ene
8 3-27h H NO, H - 34% Conia-ene

3.34 Proposed Mechanism for the Annulation and Conia-ene Reactions

The use of DA cyclopropane 3-15 in the Conia-ene reaction initially lead the
investigation towards a new process, the annulation reaction. After finding the ideal
conditions, the annulation process was applied to a variety of different substituted
indoles, and the results from Table 3.2, have indicated that these substitutions play a role
in the mechanism and can therefore change the mechanism from the annulation reaction
to the Conia-ene. The two proposed mechanisms (Scheme 3.7 & 3.8) can give some
insight into the reasons for the mixture of the two products; the annulation and the Conia-

ene products.
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-CO,CHs,
COzCHs ® CO,CH,

COCH
314" 31 23

H+
transfer

H+ transfer

_—
Rearomatization O OO
N

3-23

Scheme 3.7 Proposed Nucleophilic Ring-Opening and Annulation Mechanism

Zn(NTf,),

CO,CH; CO,CH;

COCH;_ N CO,CH;
3- zz

Scheme 3.8 Proposed Nucleophilic Ring-Opening and Conia-ene Mechanism

H3CO /,Zn(NTf)z

In the two proposed mechanisms, the key step is if the nitrogen on the indole has enough
electron density to support the attack from the alkyne functionality group. This will
impact the direction the mechanism takes; the indole plays a role in the annulation
process from proceeding, whereas with the Conia-ene the indole nitrogen is no longer

needed after the initial ring-opening attack.
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3.35 Investigation of the Conia-ene with DA cyclopropane 3-15

Since our efforts towards expanding the substrate scope of the annulation reaction were
unsuccessful, the next step was to explore the Conia-ene reaction again, this time using
nucleophiles which cannot undergo the annulation reaction. The initial optimization
involved the use of 3-methylindole as the nucleophile, and although we explored some
different Lewis acids, the best results occurred with Zn(NTf,),. Table 3.3 explores the
different nucleophiles used in the investigation of the Conia-ene reaction.

Table 3.3 Substrate Scope for the Conia-ene Reaction

Zn(NTf,), CO,CHy
Nucleophile % rt tc??e?lux COLCHs
CO,CH,4 Nu
CO,CH;
3-15 3-28
Entry Product # Starting material (nucleophile) Result
1 3-28a @ 40 %
N
H
3-29
2 3-28b O/SH 36 %
3-30
- \
3 3-28¢ N—NH, SM
/
3-31
4 3-28d ~_-SH Decomposition
3-32

5 3-28e ©ﬂNH2 SM
3-33
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After a short scope of different nucleophiles, it was evident that most of these reactions
were unsuccessful, undergoing no reaction at all (entries 3 & 5), giving low vyields
(entries 1 & 2) or only giving decomposition (entry 4). With entry 1, this nucleophile was
chosen as the methyl group blocks the 2-position on the indole and this will therefore
prevent any formation of the annulation product. With entries 2-5 these all contain
nucleophilic atoms with lone pair electrons, which will promote the ring-opening reaction

and allow for the Conia-ene to occur.

After an exhaustive attempt at optimizing both the annulation and Conia-ene reactions
with the acetylene-bearing DA cyclopropane, the results were not successful enough to
move forward with this research. It was therefore decided to end this project and attempt

using the DA cyclopropane 3-15 in other valuable synthetic reactions.

3.4 Chapter Three Conclusions

In summary the formation of the annulation adduct 3-23 was successful, which lead to a
yield of 75 %. As for the initial hypothesis of making the Conia-ene product 3-22,
initially this was not successful, however after changing the nucleophiles was achieved in
a 40 % yield using 3-methylindole. For the future of this methodology, many factors
could be changed to try and make this reaction more efficient. For the annulation
reaction, being able to get only product 3-23 with no non-aromatic 3-24 or ring-opened 3-
25 side products from occurring would be the ideal situation. This may involve
reevaluating the optimization of conditions and try new Lewis acids. As for the Conia-
ene reaction, more attempts could be made with both the conditions used as well as the
scope of nucleophiles, in order to achieve success with this reaction and the DA

cyclopropane 3-15.
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3.5 Experimental Details for Chapter 3

3.5.1 General Considerations

For general considerations refer to section 2.4.1 General Considerations from Chapter 2.

3.5.2 Experimental Procedure and Spectral Data for Acetylene-Bearing
DA Cyclopropane 3-15

O O

11

R—OCH

\ 3

Me)J\fo OCH;
2
CHO
3-21 S
COzCH3 K2CO3, MeOH 002CH3
CO,CHj, rt CO,CHj,
3-20 3-15

Dimethyl 2-(2-formylphenyl)cyclopropane-1,1-dicarboxylate (3-20) (1 equivalent) was
dissolved in methanol and slightly heated for 10 minutes until the starting material was
fully dissolved. Once removed from heat, potassium carbonate was added (2.5
equivalent) and the reaction mixture was stirred at room temperature. Dimethyl (1-diazo-
2-oxopropyl)phosphonate (3-21) (2.5 equivalent) was dissolved in methanol and slowly
added drop wise over 5 minutes. Reaction mixture was left to stir at room temperature,
and was quenched with brine once deemed complete by TLC analysis (approx. 18 h).
Brine was added to the reaction mixture and the aqueous layer was extracted with EtOAc
3 times. The organic phases were combined and dried with MgSQO,, filtered and the
solvent was removed. The residue was purified by flash column chromatography
(gradient elution, EtOAc/Hexanes) to yield the desired compound (3-15).
= Dimethyl 2-(2-ethynylphenyl)cyclopropane-1,1-dicarboxylate
CO,CH,4
CO2CH3  formylphenyl)cyclopropane-1,1-dicarboxylate (3-20) (1.00 g,

(3-15): Reagents employed: dimethyl 2-(2-

3.81 mmol), potassium carbonate (1.32 g, 9.50 mmol), dimethyl (1-diazo-2-
oxopropyl)phosphonate (3-21) (1.83 g, 9.50 mmol), methanol: yield 88 % (0.857 g, 3.32
mmol) as a light red solid; MP: 70°C, R¢ = 0.50, 30% EtOAc in hexanes; *H-NMR (400
MHz, CDCls) 6 = 7.48 (dd, J = 7.8, 7.4 Hz, 1H), 7.28-7.19 (m, 2H), 7.04 (d, J = 7.8 Hz,
1H), 3.80 (s, 3H), 3.53 (dd, J = 8.8, 8.6 Hz, 1H), 3.35 (s, 3H), 3.32 (s, 1H), 2.26 (dd, J =
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8.2, 5.1 Hz, 1H), 1.79 (dd, J = 9.0, 5.1 Hz, 1H); **C NMR (100 MHz, CDCl3) & = 170.0,
167.1, 137.3, 132.5, 128.4, 127.2, 126.7, 124.1, 82.3, 81.5, 52.7, 52.2, 36.9, 31.8, 19.1;
IR (thin film, cm™) 3286, 3027, 2953, 1727, 1437, 1334, 1132; HRMS (EI) calcd for
C15H1404 258.0892, found 258.0901.

353 General Experimental Procedures and Spectral Data for
Annulation products 3-27

Dimethyl 2-(2-ethynylphenyl)cyclopropane-1,1-dicarboxylate 3-15 (1 equivalent) was
added to a flask containing DCE, and the flask was flushed with Argon gas. To the
reaction mixture indole (1.2 equivalent) was added followed by the catalyst zinc
bistriflimide (Zn(NTf,)2) (0.1 equivalent). The reaction mixture was stirred at reflux for
approximately 2 hours, after starting material no longer remained based on TLC analysis.
The reaction mixture was cooled to room temperature and the crude solution was purified
by flash column chromatography (gradient elution, EtOAc/Hexanes) to yield the desired

annulation compound (3-27a-h).

HsCOG Dimethyl 2-((6-methyl-5H-benzo[b]carbazol-11-
CO,CH
o yl)methyl)malonate  (3-23/3-27a): Reagents  employed:

O OO Dimethyl 2-(2-ethynylphenyl)cyclopropane-1,1-dicarboxylate 3-
N 15 (0.075 g, 0.290 mmol), Indole (0.041g, 0.350 mmol),
Zn(NTf,), (0.019 g, 0.03 mmol), DCE: yield 75% (0.081 g, 0.234 mmol) of a yellow
solid; Ry = 0.40, 30% EtOAc in hexanes; 'H-NMR (600 MHz, CDCls) § = 8.29 (t, J =
7.81 Hz, 2H), 8.09 (d, J = 8.60 Hz,1H), 7.94 (br, s, 1H) 7.53 (t, J = 7.8 Hz, 1H), 7.46 (dd,
J=8.2,7.0Hz, 2H), 7.38 (d, J = 7.4 Hz, 1H), 7.27 (d, J = 15.2 Hz, 1H), 4.41 (d, J = 7.8
Hz, 2H), 4.06 (t, J = 7.8 Hz, 1H), 3.58 (s, 6H), 2.72 (s, 3H).
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HsCO,C Dimethyl 2-((5-benzyl-6-methyl-5H-benzo[b]carbazol-11-

COCH;  yl)methyl)malonate (3-27b): Reagents used: Dimethyl 2-(2-

O OO ethynylphenyl)cyclopropane-1,1-dicarboxylate 3-15 (0.075 g,

N 0.29 mmol), benzyl-Indole (0.072 g, 0.35 mmol), Zn(NTf,),

Bn (0.019 g, 0.03 mmol), DCE: yield 56 % (0.073 g, 0.156 mmol) as

a colorless solid; Ry = 0.40, 30% EtOAc in hexanes; ‘H-NMR (600 MHz, CDCls)

(mixture of products) 6 = 8.31 (dd, J = 7.6, 5.72 Hz, 2H), 8.12 (d, J = 8.2 Hz, 1H), 7.60

(d, J =8.2 Hz, 1H), 7.51 (d, J = 7.0 Hz, 1H), 7.47-7.44 (m, 2H), 7.34 (d, J = 7.6 Hz, 2H),

7.31-7.28 (m, 5H), 7.22-7.19 (m, 2H), 7.15-7.08 (m, 4H), 7.05 (d, J = 7.6 Hz, 1H), 7.00

(t, J=7.0 Hz, 2H), 6.90 (s, 1H), 5.87 (s, 1H), 5.72 (s, 2H), 5.26 (s, 2H), 5.13 (s, 1H), 4.14

(d, J = 7.6 Hz, 2H), 4.38 (dd, J = 10.5, 5.9 Hz, 1H), 4.06 (t, J = 7.6 Hz, 1H), 3.74 (s, 3H),
3.61 (s, 3H), 3.58 (s, 6H), 2.88 (s, 3H), 2.86-2.83 (M, 2H).

H3CO,C Dimethyl 2-((5,6-dimethyl-5H-benzo[b]carbazol-11-

COLHs vl )methyl)malonate (3-27c): Reagents used: Dimethyl 2-(2-

O OO ethynylphenyl)cyclopropane-1,1-dicarboxylate 3-15 (0.093 g,

N 0.360 mmol), methyl-indole (0.056g, 0.430 mmol), Zn(NTf,),
(0.025 g, 0.040 mmol), DCE: yield 68 % (0.104 g, 0.267 mmol) of
a colorless solid; Ry = 0.40, 30% EtOAc in hexanes; *H-NMR (600 MHz, CDCl3) & =
8.28 (t, J = 8.2 Hz, 2H), 8.20 (d, J = 8.2 Hz, 2H), 7.56-7.52 (m, 2H), 7.47-7.44 (m, 1H),
7.40 (d, J = 8.2 Hz, 1H), 4.42 (d, J = 7.6 Hz, 1H), 4.13 (s, 3H), 4.01 (t, J = 7.6 Hz, 1H),
3.56 (s, 6H), 3.13 (s, 3H).

|
CHj;
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H3CO,C Dimethyl 2-((2-bromo-6-methyl-5H-benzo[b]carbazol-11-

Br CO,CH3  yl)methyl)malonate (3-27d): Reagents used: Dimethyl 2-(2-

O OO ethynylphenyl)cyclopropane-1,1-dicarboxylate 3-15 (0.075 g,

N 0.290 mmol), 5-bromoindole (0.069 g, 0.350 mmol),

H Zn(NTf,), (0.018 g, 0.030 mmol), DCE: yield 32% (0.042 g,

0.092 mmol) as a solid; Ry = 0.40, 30% EtOAc in hexanes; *H-NMR (600 MHz, CDCls)

(mixture of products) 6 = 8.94 (s,1H), 8.42 (s, 1H), 8.30 (d, J = 8.8 Hz, 1H), 8.07 (t,J =

8.8 Hz, 1H), 7.97 (s, 1H), 7.53-7.47 (m, 4H), 4.33 (d, J = 7.0 Hz, 2H), 4.01 (t, J = 7.6 Hz,
1H), 3.97 (s, 6H), 3.71 (s, 2H), 2.62 (br s, 3H).

H3CO,C _
Dimethyl 2-((2-methoxy-6-methyl-5H-benzo[b]carbazol-11-

Voo CO,CHs _
yl)methyl)malonate (3-27e): Reagents used: Dimethyl 2-(2-

N OO ethynylphenyl)cyclopropane-1,1-dicarboxylate 3-15 (0.045 g,

H 0.180 mmol), 5-methoxyindole (0.032 g, 0.220 mmol),
Zn(NTf,), (0.012 g, 0.018 mmol), DCE: yield 48% (35 mg, 0.086 mmol) of a solid; Ry =

0.40, 30% EtOAc in hexanes; yield N/A. Mixture was not cleanly separated.

HyCO,C Dimethyl  2-((2-hydroxy-6-methyl-5H-benzo[b]carbazol-11-

HO COLHs vy methyl)malonate (3-27f): Reagents used: Dimethyl 2-(2-
O OO ethynylphenyl)cyclopropane-1,1-dicarboxylate 3-15 (0.075 g,
N 0.29 mmol), 5-hydroxyindole (0.047 g, 0.35 mmol), Zn(NTf,),

(0.018 g, 0.030 mmol), DCE: yield N/A. Mixture was not cleanly separated.
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354 Experimental and spectral data for Conia-ene reaction

O CO,CHs Dimethyl 4-(2-methyl-1H-indol-3-yl)-1-methylene-3,4-
. COLHs  dihydronaphthalene-2,2(1H)-dicarboxylate (3-28a): Reagents
O N\ employed: Dimethyl 2-(2-ethynylphenyl)cyclopropane-1,1-

N dicarboxylate 3-15 (0.100 g, 0.390 mmol), 2-methylindole (0.061 g,

0.460 mmol), Zn(NTf,), (0.025 g, 0.040 mmol), DCE: yield 40 % (0.061 g, 0.157 mmol)
as a colorless oil; Ry = 0.53, 30% EtOAc in hexanes; *H-NMR (600 MHz, CDCl5): &:
7.53-7.51 (m, 1H), 7.28-7.25 (m, 3H), 7.17-7.15 (m, 1H), 7.06 (t, J = 7.8 Hz, 1H ) 6.90
(d, J=7.4 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 5.82 (s, 1H), 4.90
(s, 1H), 3.72 (brd, J=9.0 Hz, 1H), 3.69 (s, 3H), 3.19 (s, 3H), 3.10 (dd, J = 13.7, 9.0 Hz,
1H), 2.58 (dd, J = 13.7, 2.0 Hz, 1H) 1.61 (s, 3H).

co,cH, Dimethyl 1-methylene-4-(phenylthio)-3,4-

C0CHs dihydronaphthalene-2,2(1H)-dicarboxylate (3-28b): Reagents

©/S employed:  Dimethyl  2-(2-ethynylphenyl)cyclopropane-1,1-

dicarboxylate 3-15 (0.100 g, 0.390 mmol), thiophenol (0.047 mL,

0.460 mmol), Zn(NTf,), (0.025 g, 0.040 mmol), DCE: yield 36 % (0.062 g, 0.168 mmol)

as a yellow oil. Rf= 0.53, 30% EtOAc in hexanes; *H-NMR (400 MHz, CDCls): § = 7.65

(dd, J=7.4,1.2 Hz, 1H), 7.58 (dd, J = 7.4, 1.2 Hz, 1H), 7.38-7.36 (m, 2H), 7.28-7.22 (m,

4H), 5.71 (s, 1H), 5.02 (s, 1H), 3.73 (s, 3H), 3.64 (s, 3H), 2.90 (dd, J = 14.1, 5.5 Hz, 1H),
2.64 (dd, J = 14.1, 8.6 Hz, 1H).
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4 The Catalyst-Free Tandem Ring-Opening/Click Reaction of
Acetylene-Bearing Donor Acceptor Cyclopropanes

4.1 Introduction

Previous research done from Chapter 3, with the acetylene-bearing DA cyclopropane lead
the exploration of using this substrate in the next phase of the investigation of novel DA

cyclopropanes.

4.1.1 Donor Acceptor Cyclopropane Hemimalonates

The use of the DA diester cyclopropane, is well known and is well used among chemists
in organic synthesis. Changing one of the ester functionalities to a carboxylic acid, has
shown to improve the reactivity of these DA cyclopropanes.™™ As a result, ring-opening
reactions which may not occur with the standard diester cyclopropane, may react with the
hemimalonate cyclopropane.

Reported back in 2011, M. R. Emmett and M. A. Kerr (Scheme 4.1%), discovered new
modes of DA cyclopropane activation converting one of the geminal esters to a
carboxylic acid to give a hemimalonate cyclopropane. This new cyclopropane can react
as an electrophile, and in the presence of indole underwent ring opening in the absence of

a Lewis acid."
H;CO,C
3R4 2 CO,H
R2 R4 H3CO R2
mRs + =0 no catalyst _ N\ _R3
R! e} 50 °C/ 13 kbar h1
41 4-2 4-3

Scheme 4.1 Previous Work on Cyclopropane Hemimalonates
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There were many speculations into the reasoning behind the success with these
hemimalonate cyclopropanes. The first assumption was that the presence of the
carboxylic acid moiety, allowed for the formation of a favorable hydrogen bond (Figure
4.1). It was assumed that this hydrogen bonding resulted in the enhancement of the
electron-withdrawing capabilities of the ester moiety, and therefore helped facilitate the
nucleophilic ring-opening reaction. This however would come at the expense of
depositing an equal amount of electron density on the carboxylate moiety, thus making it
less electron-withdrawing, and therefore the net activation would be closer to zero.*

A more likely reason for the increased reactivity of these hemimalonates would be that
the hydrogen bond stereoelectronically aligns the carbonyl groups, which allows the
receiving of electron density in the ring-opening reaction to occur. The resulting
zwitterions from the cyclopropane ring-opening would be a highly delocalized six-

electron species.

i\]uH o
H5CO

H
/\R~<§§_O\H

Figure 4.1 The Effects of Intramolecular Hydrogen Bonds on Nucleophilic Ring-
Opening of DA Cyclopropane

The use of hemimalonates over the diester cyclopropane was also reported in 2012, with
nucleophilic ring opening by sodium azide.? In this report, the diester cyclopropane did
not undergo successful ring-opening, only the hemimalonate cyclopropane did. For this
reaction, the previous assumptions about hydrogen bonding and the stereooelectronic
alignment of the carbonyls would not make sense in this case, as it was done in a
refluxing protic environment. Other possible reasons for the required carboxylic acid
moiety for this reaction could be due to the acyl azide would undergo a [3,3]-sigmatropic
rearrangement to yield a ketene (Scheme 4.2%). This would in turn regenerate the acid by
water, followed by decarboxylation. This proposed mechanism seems plausible, however

the acylazide was never isolate and therefore the mechanism is still inconclusive.?
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R CO,CH; R  CO,CH
\>\\\COZH HNg )>\$fo PPN 2

N c ”
CO,CHj3 R) AN 3 50 N3 CO.H
< _N” HO:
4-4 N l
R
N3/'\ACOQCH3
4-5

Scheme 4.2 Proposed Mechanism for Azide Ring-Opening of DA Cyclopropane

Hemimalonates

4.1.2 Research Objective

The focus of this chapter will be on the acetylene-bearing DA cyclopropane 4-6 in a
tandem ring-opening/click reaction to form new triazole containing compounds. After the
extensive research done with diester substrate 4-6 from Chapter 3, this novel DA
cyclopropane was subjected to the conditions from previous work using
hemimalonates.® As with the previous work done, the cyclopropane was required to be
the hemimalonate version rather than the diester one. The conditions employed® were
catalyst free and the initial hypothesis was that this reaction would only lead to substrate
4-7. The initial hypothesis was partially correct, however after the ring-opening and
decarboxylation a 1,3-dipolar cycloaddition occurred to give the triazole product 4-8
(Scheme 4.3).

NaNj3 (1.2 equivalent) // R R Ntl}l
T NH,C! (1.4 equivalent) o) Click Reaction \_N CO,CH,
R
2-MeO(CH2)20H . Hzo OCH
CO,CH, (10:1) N :
CO,H 3
4-6 4-7 4-8

Scheme 4.3 The Efforts towards Novel Linearly Fused Tricyclic Triazoles using

Donor Acceptor Cyclopropane Hemimalonates
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4.2 Results and Discussion

4.2.1 Synthesis of DA Cyclopropanes Precursors

To start this project, a variety of different DA cyclopropanes had to be synthesized.
Initially we believed that a large library of cyclopropanes could be easily accessed
through a simple cross coupling reaction of the alkyne 4-9 and an aryl halide (Scheme
4.4). This synthetic route proved to be successful, only when the aryl halide used was an
iodo-species. The iodo-species was more successful as it helped reduce the amount of
dimer formed between two of the alkyne species (4-11). The bromo-substrates resulted in
lower yields of the desired product 4-10 and higher yields of the dimer 4-11; thus the

iodo-species was used for most examples.

R
= =
Arl
CO,CH3 > CO,CHj4
COZCH3 Pd(PPh3)4, Cul COZCH3
NEt;
4-9 reflux 4-10
8-18 h

Formation of alkyne dimer:
H;CO,C
H;CO,C

CO,CH;
CO,CH,
4-11

Scheme 4.4 The Sonogashira Cross Coupling Reaction with DA Cyclopropane 4-9
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The Sonogashira cross coupling reaction received its’ name back in 1975 from the
discovery by Sonogashira, Tohda, and Hagihara.® They determined that the coupling
could be easily done at room temperature using a palladium source as the catalyst, and
combined with an amine as the solvent and a co-catalytic amount of copper iodide.
Although Sonogashira reactions are generally considered to be done with copper,
“copper-free” options may need to be considered in order to avoid the undesirable
formation of alkyne homo-coupling cause by the copper-mediated Hay/Glaser reaction.’
The term “Sonogashira Reaction” has been used as a description for any palladium(0)-
catalysed coupling of an sp? (or sp®) halide or triflate with a terminal alkyne, without the

presence of copper-salts.

The proposed mechanism, is thought to have the two catalysts act independently to one
another, the first cycle being the palladium-cycle or cycle A, and the second being the
copper-cycle or cycle B (Figure 4.2°). Cycle A follows a classic C-C palladium cross-
coupling formation.®” The cycle starts with the catalytically active Pd(0)L, species (4-
12), which can be formed from a variety of Pd(0) complexes, such as Pd(PPh3),, or can
be created from Pd(Il) complexes through reductive elimination. The amine solvent/base,
can also aid in the reduction of Pd(Il) to Pd(0) through the formation of iminium
cations.®® Once the desired Pd(0)L; species has been formed, the first step of the cycle is
initiated by oxidative addition of the aryl or vinyl halide (4-13). This is considered to be
the rate-determining step of the entire catalytic cycle. Once the halogen species binds, it
creates the adduct 4-14, which can then be transformed into 4-15 after transmetalation
with the copper acetylide 4-16, formed in Cycle B. From there, reductive elimination
occurs, after cis/trans-isomerization to the final alkyne (4-17), to give the desired product
4-18 and regeneration of the palladium catalyst (4-12).°
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418
PdOL2 R1-X 4-13
412
R
417 L-Pd—=—R, L
|
L Cycle A Ry—Pd—X 4-14
L
T
415 RyPd——R;
L
Cu™x Cu—=—R, 4-16
Cycle B
H—R
2 RsNTHX
H———R
| 2 RsN
Cu*x

L= phosphane, base, solvent, or alkyne

Scheme 4.5 The Proposed Sonogashira Mechanism
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Table 4.1 Synthesis of Internal Alkynes via Sonogashira Cross-Coupling.

R
= =Z
Arl
CO,CHj4 > CO,CH3
COZCH3 Pd(PPh3)4, Cul COZCH3
NEt;
4-9 reflux 4-10
8-18 h

4-10e: 85 % 4-10f: N/A 4-109: 72 %

Under standard conditions®, using aryl halides, the Sonogashira cross coupling reaction
with acetylene-bearing DA cyclopropane 4-9, worked relatively well for most of the
substrates. In the case of the heteroaromatic substrate 4-10f, which was successfully
made, however the clean separation of the alkyne and the dimer formed was not
achieved. For this reason a yield cannot be reported, and the product mixture was moved

onto the next synthetic step.
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4.2.2 Synthesis of the Alkyl-Substituted Acetylene-Bearing DA
Cyclopropane

As previously mentioned, the Sonogashira reaction can only work with sp? aryl halides.

Our goal was to find alternative ways to introduce an alkyl chain (C,XHzn+1, N= 1-6) onto

our alkyne. Our initial attempts began with trying to deprotonate the alkyne and introduce

an alkyl chain electrophile (Scheme 4.6). These attempts were never successful and

therefore other methods had to be investigated.

CH,
= =
Base + Rl
CO,CH,4 > CO,CHz
CO,CH,4 CO2CH3
4-9 419

Scheme 4.6 Attempt to make Substrate 4-19 from Alkyne 4-9

To make cyclopropane 4-10h the synthetic route had to start from the beginning with a

Sonogashira cross coupling reaction of readily available bromobenzaldehyde 4-20 with

9-10

hexyne 4-21, followed by the standard synthesis”™ of the cyclopropane moiety. This

route, albeit lengthy in steps, had precedence that it would be successful as substrates 4-

22 and 4-23 had been successfully made by other research groups.***?

4-21
Br M &
q Pd(PPh3)4, Cul |
NEt
4-20 O requS;( 4-22 O
12h
80 %
O |
— Il
Dimethyl malonate /Cochs (H3C)2S-CHj
piperidine, acetic acid Pz NaH >
CO,CH
o benze1n6e,hreflux 223 DMSO
4-22 o 4-23 rt, 12 h 4-10h
65 % 38 %

Scheme 4.7 The Synthetic Route towards the DA Cyclopropane 4-10h
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4.2.3 Synthesis of additional DA cyclopropanes

In addition to the aliphatic alkyne, two other cyclopropanes were synthesized. Starting
with readily available aldehyde 4-24 (Scheme 4.9) an O’Hira-Bestmann homologation®?
was done to give the alkyne 4-26. Substrate 4-27 was available and was carried forward
in the synthesis of the triazole compounds.

2 9
R—OCHj
H3C)S( \
o I ocH,

2
y 4-25 X
HsC0,C” “CO,CH, K2CO0s, MeOH HsCO,C” CO,CHs
424 36 % 426

Scheme 4.8 Synthesis towards DA Cyclopropane 4-26

/l

A\
CO,CH,
\ CO,CHs
4-27

Scheme 4.9Acetylene-Bearing Indole DA Cyclopropane
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4.2.4 Synthesis of DA cyclopropane hemimalonates

R R
‘ C02CH3 1.7 M NaOH . C02CH3
'CO,CHs MeOH, rt b ""COH
4-28 4-4

Scheme 4.10 Selective Trans-Saponification of DA Cyclopropane Diester Substrates

As previously mentioned, the diester cyclopropane would not successfully undergo ring-
opening with sodium azide.? In order for the ring-opening to occur, an ester-acid
cyclopropane (4-4) must be used, to help promote the nucleophilic attack by the azide.
This conversion of one of the esters to an acid, is done by a simple saponification using
basic conditions. Previous studies have shown, through the use of deuterium labeling,
that the rate of saponification between the two esters favors the trans-ester over the cis-
ester.* Due to this rate difference, mono-saponifcation can be done easily without the
concern of making the diacid cyclopropane. This reaction proceeded well for all
substrates except with substrate 4-27b, which may have decomposed after the work-up. It
is worthy to note that the yields were reduced for the electron-withdrawing substituent
(NO,, 4-6e) as well as with the heteroaromatic species (4-6f) due to the starting material

4-10f being carried forward as a mixture (Table 4.2).
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Table 4.2 Synthesis of DA Cyclopropane Hemimalonates

R R
Z 1.7 M NaOH Z
CO,CHs MeOH, rt CO,CHs
’1CO,CH 2-8h /. COH
2 3 2
4-10 4-6

H
Z

CO,CH,
"1CO,H

4-6a, 89 %

4-6f, 93 % 4-6g, 30 % 4-6h, 75 %
A
/ %
\ \ CO,CHj CO,CH,
7\CO,H
| 2 "ICO,H
4-27b, N/A 4-26b, 96 %
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4.2.5 Synthesis of the triazole substrates

R NaNj (1.2 equivalent) N
CO,CH; NH,CI (1.4 equivalent) 8
CO,H -~ R OCH,
aa 2-MeO(CH,),0H : H,0 s
(10:1) = 0
. Nxn
NaN3 (1.2 equivalent) R R |
NH,CI (1.4 equivalent) = \_N CO,CHj
\\ > o 9
R 2-MeO(CH,),0OH:H,0
CO,CH34 (10:1) OCH;
CO,H N
4-6 47 4-8

Scheme 4.11 The Synthetic Route towards the Triazole Substrates

The alkyne substrate 4-6 was subjected to conditions previously used with DA
cyclopropane hemimalonates and azide as the nucleophile.? To our delight DA
cyclopropane 4-6 underwent the predicted ring-opening and decarboxylation, as well as a
1,3-dipolar cycloaddition commonly referred to as click chemistry. This reaction was
clean and efficient, catalyst-free and gave great yields for this three-step process. Table
4.4 shows the substrate scope for the formation of triazoles. This reaction went relatively
smoothly with most substituents, however the heteroaromatic substituents 4-8g and 4-8h,
gave a much lower yield. This could be accounted for the fact that the starting material
was more difficult to make, difficult to separate, and resulted in lower the yields of
starting material 4-6. It is to be noted that when there was an electron-withdrawing group,
NO,, on the phenyl ring of the R group 4-8e this resulted in a lower yield, whereas
electron-donating substrates such as 4-8c and 4-8d had the opposite effect and increased
the yield of the triazole product. The cyclopropane with the aliphatic chain at the R
position 4-8h did give triazole product, however in a lower yield than other substrates. It
is also important to take note of 4-26¢, which features no phenyl group off of the
cyclopropane, resulted in no yield of the triazole product, and the lack of reaction from
this substrate can be explained by the proposed mechanism, Scheme 4-11. In this
proposed mechanism, the cyclopropane opening is much better facilitated when there is

the benzene ring present. This can be explained by the zm-electrons in the benzene ring,

62

www.manaraa.com



which help stabilize the transition state of the reaction, allowing for ring opening to occur

by supporting the 8" charge on the donor-acceptor cyclopropane. Substrate 4-26¢, without

the benzene ring there to support the cyclopropane, the ring opening will not occur and

therefore the reaction itself will not proceed.

Table 4.3 Reaction Scope of Triazoles

N<
=N
NaNj; (1.2 equivalent) R— |
NH,CI (1.4 equivalent) N CO,CH,
N
N -
2-MeO(CH2)2OH . Hzo
COCH;, (10:1)
CO,H
4-6 4-8
N:N N:N
|
\_N CO,CHs CO,CH3
4-8a:80% 4-8b: 75%
@, o
9 <o
\_N CO,CH; CO,CH,
4-8c: 76% 4-8d: 71%
CO,CH,4 CO,CH;
4-8e: 62% 4-8f: 30%
A N\N N:N
| \_ \_A CO,CH
IS N COQCH3 N 2 3
4-8g: 40% 4-8h:54%
Nsn

WCOZCHB

4-26¢, no reaction
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4.2.6 Proposed Mechanism of the Catalyst-Free Tandem Ring-
opening/Click Reaction Donor Acceptor Cyclopropanes

Scheme 4.12 The Proposed Mechanism of the Reaction with DA Cyclopropane 4-6

and Sodium Azide

The results from Table 4.4 have proven that this reaction was extremely successful,
especially since the reaction undergoes three mechanistic steps in one-pot. The first step
is the nucleophilic ring-opening by azide, to give substrate 4-29, which next underwent
decarboxylation to give 4-30, that can tautomerize to 4-31. Substrate 4-31 can then
undergo the 1,3-dipolar cycloaddition to give the triazole product 4-8. This reaction
mechanism is notable as it does not require any catalyst and is also done

intramolecularly.
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4.3 Conclusions

As demonstrated, DA cyclopropanes, in particular the acetylene-bearing DA
cyclopropane hemimalonate, has proven to be exceptional substrates for the catalyst-free
tandem ring-opening/click reaction. This reaction resulted in a variety of novel linearly
fused tricyclic triazoles to be successfully made, in excellent yields for this one-pot,
three-step procedure.

In summary, we have described a new reaction involving a tandem ring-
opening/cycloaddition reaction with donor-acceptor cyclopropanes. The reaction was
technically simple and generated molecular complexity in a rapid fashion. The newly
formed products were novel tricyclic triazoles which have shown fluorescent behavior,
and these triazole compounds have been shown in research to become fluorescent probes
for metal detection.”™ Work is underway to determine the fluorescence behavior of these

compounds as well as potential bio-activity.

4.4 Experimental

4.4.1 General Considerations

For general considerations refer to section 2.4.1 General Considerations from Chapter 2

4.4.2 General Procedure and Spectral Data for Cyclopropanes 4-10a-g
P Dimethyl 2-(2-ethynylphenyl)cyclopropane-1,1-dicarboxylate
Z

CO,CHg
CO,CH; procedure and spectral data.

(4-9/4-10a): See Chapter 3 compound 3-15 for experimental
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Ar
= =
= Arl, Pd(PPhy),, Cul 7
CO,CH; NEt, reflux, 8-18 h CO,CHs

CO,CH,4 CO,CH3

Dimethyl 2-(2-ethynylphenyl)cyclopropane-1,1-dicarboxylate (4-9) (1 equivalent) was
dissolved in triethylamine (C = 0.890 mM), followed by the addition of the aryl halide
1.2 equivalent), copper iodide (Cul) (5 mol %) and
tetrakis(triphenylphosphine)palladium(0) (Pd(PPhs)4)(2.5 mol %). The reaction mixture
was heated to reflux under Argon atmosphere, for 8 to 18 hours depending on the
substrate. Upon completion deemed by TLC analysis, the reaction was cooled to room
temperature and the solvent was removed. The crude product was dissolved in
dichloromethane and washed with water 3 times. The organic phase was dried with
MgSQ,, filtered, and the solvent was removed. The residue was purified by flash column

chromatography (EtOAc/Hexanes) to yield the desired compounds (4-10b-g).

Dimethyl 2-(2-(phenylethynyl)phenyl)cyclopropane-1,1-
dicarboxylate (4-10b): Reagents employed: Dimethyl 2-(2-
ethynylphenyl)cyclopropane-1,1-dicarboxylate (4-9) (0.100 g,
0.387 mmol), iodobenzene (0.052 mL, 0.465 mmol), Pd(PPhs),s
(0.010 g, 0.009 mmol), Cul (0.003 g, 0.018 mmol), triethylamine (0.500 mL, C = 0.890
mM): yield 61% (0.079 g, 0.236 mmol) as a clear oil; Rs = 0.51, 30% EtOAc in hexanes;
'H NMR (600 MHz, CDCl3) & = 7.57-7.52 (m, 3H), 7.38-7.34 (m, 3H), 7.27-7.25 (m,
2H), 7.11-7.09 (m, 1H), 3.71 (s, 3H), 3.64 (t, J = 8.8 Hz, 1H), 3.37 (s, 3H), 2.30 (dd, J =
8.2, 5.3 Hz, 1H), 1.80 (dd, J = 9.4, 5.3 Hz, 1H); **C NMR (100 MHz, CDCl3) & = 170.2,
167.1, 136.6, 131.7, 131.6, 128.3, 127.9, 127.3, 127.0, 125.3, 123.3, 110.0, 94.6, 87.3,
52.6, 52.2, 36.8, 32.4, 19.2; IR (thin film, cm™) 3061, 2951,1728, 1495, 1436, 1332,
1284, 1215, 1130, 757, 692; HRMS (EI) calc’d for C,;H;50,4 334.1205, found 334.12009.
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Dimethyl 2-(2-(naphthalen-1-ylethynyl)phenyl)cyclopropane-
1,1-dicarboxylate (4-10c): Reagents employed: Dimethyl 2-(2-
ethynylphenyl)cyclopropane-1,1-dicarboxylate (4-9) (0.150 g,
0.581 mmol), 1-iodonaphthalene (0.102 mL, 0.699 mmol),
Pd(PPh3); (0.015 g, 0.013 mmol), Cul (0.006 g, 0.030 mmol),
triethylamine (0.700 mL, C = 0.890 mM): yield 78% (0.175 g,
0.455 mmol) as a clear oil; Ry = 0.46, 30% EtOAc in hexanes; *H NMR (600 MHz,
CDCl3) 6 = 8.46 (d, J = 8.2 Hz, 1H), 7.87 (dd, J = 10.6, 8.8 Hz, 2H), 7.78 (d, J = 7.6 Hz,
1H), 7.66-7.65 (m, 1H), 7.62 (t, J = 7.0 Hz, 1H), 7.54 (t, J = 7.0 Hz, 1H), 7.47 (t, J=7.6
Hz, 1H), 7.30-7.29 (m, 2H), 7.13-7.12 (m, 1H), 3.72 (dd, J = 8.8, 8.2 Hz, 1H), 3.54 (s,
1H), 3.40 (s, 1H), 2.35 (dd, J = 8.2, 5.3 Hz, 1H), 1.85 (dd, J = 9.4, 5.3 Hz, 1H); *C NMR
(100 MHz, CDCl3) 6 = 170.0, 167.1, 136.4, 133.1, 132.0, 130.6, 128.7, 128.1, 128.0,
127.3, 126.9, 126.7, 126.3, 125.4, 125.2, 120.9, 92.6, 92.1, 52.5, 52.2, 37.0, 32.2, 19.1;
IR (thin film, cm™) 3057, 2951, 1728, 1436, 1283, 1130, 802; HRMS (EI) calc’d for
CasH2004 384.1362, found 384.1363.

Dimethyl 2-(2-((2,4-dimethoxyphenyl)ethynyl)phenyl)
cyclopropane-1,1-dicarboxylate (4-10d): Reagents
employed: Dimethyl 2-(2-ethynylphenyl)cyclopropane-1,1-
dicarboxylate (4-9) (0.125 g, 0.484 mmol), 1-lodo-2,4-
dimethoxybenzene (0.153 g, 0.581 mmol), Pd(PPh3), (0.014
g, 0.012 mmol), Cul (0.005 g, 0.024 mmol), triethylamine (0.600 mL, C = 0.890 mM):
yield 57% (0.108 g, 0.274 mmol) as a clear oil; R; = 0.29, 30% EtOAc in hexanes; *H
NMR (400 MHz, CDCl3) & = 7.53-7.51 (m, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.21-7.19 (m,
2H), 7.05-7.02 (m, 1H), 6.50-6.45 (m, 2H), 3.89 (s, 3H), 3.82 (s, 3H), 3.69 (s, 3H), 3.64
(dd, J = 9.0, 8.6 Hz, 1H), 3.36 (s, 3H), 2.32 (dd, J = 8.6, 5.1 Hz, 1H), 1.84 (dd, J = 9.4,
5.1 Hz, 1H); 3¢ NMR (100 MHz, CDCI3) 6 =167.3, 161.1, 136.2, 134.4, 131.7, 127.3,
127.1, 126.7, 125.9, 110.0, 105.3, 104.8, 98.4, 91.1, 90.1, 55.8, 55.4, 52.5, 52.1, 36.9,
32.3, 19.4; IR (thin film, cm™) 2951, 2210, 1727, 1608, 1509, 1300, 1211, 1124, 1030,
758; HRMS (EI) calc’d for Cy3H2,06 394.1416, found 394.1412.
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Dimethyl 2-(2-((2-nitrophenyl)ethynyl)phenyl)cyclopropane-
1,1-dicarboxylate (4-10e): Reagents employed: Dimethyl 2-(2-
ethynylphenyl)cyclopropane-1,1-dicarboxylate (4-9) (0.050 g,
0.190 mmol), 1-lodo-2-nitrobenzene(0.057 g, 0.230 mmol),
Pd(PPh3), (0.006 g, 0.005 mmol), Cul (0.002 g, 0.009 mmol),
triethylamine (0.300 mL, C = 0.890 mM): yield 85 % (0.061 g, 0.161 mmol) as a clear
oil; Rt = 0.29, 30% EtOAC in hexanes; *H NMR (400 MHz, CDCl3) 8 = 8.10 (dd, J = 8.2,
1.2 Hz, 1H), 7.77 (dd, J = 7.8, 1.2 Hz, 1H), 7.61 (dt, J = 7.4, 1.6 Hz, 2H), 7.49-7.45 (m,
1H), 7.33-7.27 (m, 2H), 7.09 (br d, J = 7.4, 1.6 Hz, 1H), 3.70 (s, 3H), 3.64 (t, J = 8.6 Hz,
1H), 3.36 (s, 3H), 2.31 (dd, J = 8.2, 5.1 Hz, 1H) 1.84 (dd, J = 9.4, 5.5 Hz, 1H); *C NMR
(100 MHz, CDCl3) 6 = 170.0, 167.0, 149.2, 137.0, 134.9, 132.8, 132.6, 128.9, 128.6,
127.4, 127.0, 124.6, 124.4, 118.8, 95.1, 89.6, 52.6, 52.2, 37.1, 31.8, 19.1; IR (thin film,
cm™) 2952, 2853, 2217, 1727, 1525, 1342, 1286, 1216, 1130, 746; HRMS (EI) calc’d for
C1H17NOg 379.1056, found 380.1136.

Dimethyl 2-(2-(quinolin-3-ylethynyl)phenyl)cyclopropane-1,1-
dicarboxylate (4-10f): Reagents employed: Dimethyl 2-(2-
ethynylphenyl)cyclopropane-1,1-dicarboxylate (4-9) (0.100 g,
0.390 mmol), 3-iodoquinoline (0.128 g, 0.500 mmol), Pd(PPh3)4
(0.012 g, 0.010 mmol), Cul (0.004 g, 0.020 mmol), triethylamine
(0.500 mL, C = 0.890 mM): (0.025 g product, 0.062 g of dimer
isolated), as a clear oil; Rf = 0.24, 30% EtOAc in hexanes; *H NMR (400 MHz, CDCls)
(mixture of products) & = 8.98 (br s, 1H), 8.32 (br s, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.81
(d, J=8.2 Hz, 1H), 7.71 (dd, J = 8.2, 7.0 Hz, 1H), 7.60-7.56 (m, 2H), 7.49 (d, J = 7.6 Hz,
2H), 7.28 (brt, J = 7.6 Hz, 1H), 7.20 (t, J = 7.6 Hz, 2H), 7.12 (d, J = 7.6 Hz, 1H), 7.06 (d,
J = 7.8 Hz, 1H), 3.82 (br s,2H), 3.71 (s, 3H), 3.65 (dd, J = 8.8, 8.2 Hz, 1H), 3.48 (br t,
1H), 3.39 (br s, 2H), 3.35 (s, 3H), 2.36 (dd, J = 9.4, 5.5 Hz, 1H), 2.33 (dd, J = 7.6, 5.3
Hz, 1H), 1.89-1.82 (br m, 2H).

68

www.manaraa.com



Dimethyl  2-(2-(thiophen-2-ylethynyl)phenyl)cyclopropane-
1,1-dicarboxylate (4-109): Reagents employed: Dimethyl 2-(2-
ethynylphenyl)cyclopropane-1,1-dicarboxylate (4-9) (0.075 g,
0.290 mmol), 2-bromothiophene (0.042 mL, 0.430 mmol),
Pd(PPh3), (0.006 g, 0.006 mmol), Cul (0.003 g, 0.002 mmol),
triethylamine (0.350 mL, C = 0.890 mM): yield 72% (0.071 g, 0.209 mmol) as a clear oil;
Rf = 0.42, 30% EtOAc in hexanes; 'H NMR (600 MHz, CDCls) § = 7.48 (br dd, J = 7.0,
2.4 Hz, 1H), 7.29 (d, J = 4.1 Hz, 2H), 7.25-7.22 (m, 2H), 7.09 (br d, J = 7.0, 1.8 Hz, 1H),
7.02 (t, J = 4.7 Hz, 1H), 3.74 (s, 3H), 3.57 (t, J = 8.8 Hz, 1H), 3.36 (s, 3H), 2.29 (dd, J =
8.2, 5.3 Hz, 1H), 1.80 (dd, J = 9.4, 5.3 Hz, 1H); **C NMR (100 MHz, CDCl3) & = 170.0,
167.1, 136.5, 132.0, 131.4, 128.0, 127.3, 127.2, 127.1, 127.0, 124.9, 123.2, 91.0, 87.8,
52.6, 52.1, 36.7, 32.1,19.1; IR (thin film, cm'l) 2950, 1725, 1434, 1383, 1127; HRMS
(EI) calc’d for C19H1604S 340.0769, found 340.0770.

4.4.3 General Experimental Procedure for the Synthesis of Substrate 14h

4-21
Br \/\/ 4
q Pd(PPh3)4, Cul I
NEt.
420 O reflux 422 ©
12 h
80 %
(@]
/ Il
= _
Dimethyl malonate CO,CHj (H3C)2<39 gt
piperidine, acetic acid = NaH
) benzene, reflux COCHs DMSO
4-22 1;% *,]/ 4-23 r, 12 h 4-10h
o 38 %

2-bromobenzaldehyde (4-20) (1 equivalent) was dissolved in triethylamine (3.0 mL)
under Argon atmosphere. To this solution, 1-hexyne (4-21) (1.2 equivalent),
Tetrakis(triphenylphosphine)palladium(0) (Pd(PPhs)4) (2 mol %) and copper iodide (Cul)
(1 mol %) were added. The solution was stirred at 50° C for 4 hours, than cooled to room
temperature. The reaction mixture was filtered and the solid remaining was rinsed with
ether. The residue was purified by flash chromatography (EtOAc/Hexanes) to yield the
desired compound (4-22).
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2-(hex-1-yn-1-yl)benzaldehyde (4-22): Reagents employed: 2-
= bromobenzaldehyde (4-20) (0.095 mL, 0.811 mmol), 1-hexyne
(4-21) (0.112 mL, 0.975 mmol), Pd(PPh3), (0.018 g, 0.016
I mmol), Cul (0.002 g, 0.008 mmol), triethylamine (3.0 mL): yield

O
80 % (0.121 g, 0.649 mmol) as a yellow oil: data matched that of previously reported™

General Experimental Procedure for the Synthesis of Substrate 17.
2-(hex-1-yn-1-yl)benzaldehyde (4-22) (1 equivalent) was dissolved in benzene (5 mL)
and dimethyl malonate (1.3 equivalent) was added. In a separate flask, the piperidine (0.1
equivalent) and acetic acid (0.1 equivalent) were added together, this was added to the
reaction flask and the reaction mixture was heated to reflux overnight using a Dean-Stark
apparatus. After 16- 18 hours, upon completion by TLC analysis, the reaction was cooled
and water was added and the aqueous was extracted with EtOAc 3 times. The organic
layers were combined and washed with 1M NaOH solution 4 times, followed by a water
wash. From there the organic layers were dried with MgSO,, filtered and the solvent was
removed. This yielded the desired compound (4-23).

i Dimethyl 2-(2-(hex-1-yn-1-yl)benzylidene)malonate (4-23):

COLHs  Reagents employed: 2-(hex-1-yn-1-yl)benzaldehyde (4-22) (0.075
=

COCH3 g, 0.403 mmol), dimethyl malonate (0.068 g, 0.515 mmol),

piperidine (0.003 g, 0.040 mmol), acetic acid (0.002 g, 0.040 mmol), benzene: yield 65%
(0.078 g, 0.262 mmol) as a yelow oil: data matched that of previously reported*?

General Experimental Procedure for the Synthesis of Substrate 4-10h.

Dimethyl 2-(2-(hex-1-yn-1-yl)benzylidene)malonate (4-23) (1 equivalent) was dissolved
in DMSO (2 mL). In a separate reaction flask, the Corey-Chaykovsky ylide (1.7
equivalent) was dissolved in DMSO (5 mL) and sodium hydride (1.7 equivalent, in 60%
mineral oil) was added portionwise and stirred until the evolution of H, ceased. The
starting material solution was slowly added dropwise over 5 minutes, the reaction

mixture was stirred at room temperature for 6 hours and as the reaction was complete by
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TLC analysis. Water was added to the reaction and the aqueous was extracted 4 times
with ether. The organic phases were combines and washed 4 times with brine, and 3
times with water. The organic phases were dried with MgSO, filtered, and the solvent
was removed. The residue needed no further purification to yield the desired compound
4-10h.

Dimethyl 2-(2-(hex-1-yn-1-yl)phenyl)cyclopropane-1,1-
dicarboxylate (4-10h): Reagents employed: dimethyl 2-(2-(hex-
1-yn-1-yl)benzylidene)malonate (4-23) (0.075 g, 0.250 mmol),
Dimethyloxosulfonium methylide (Corey-Chaykovsky Reagent)
(0.092 g, 0.420 mmol), sodium hydride (in 60% mineral oil, 0.016 g, 0.420 mmol),
DMSO: vyield 38 % (0.030 mg, 0.095 mmol) as a clear oil; R¢ = 0.53, 30% EtOACc in
hexanes; *H NMR (400 MHz, CDCls) & = 7.37-7.35 (m,1H), 7.18-7.14 (m, 2H), 7.01-
6.99 (m, 1H), 3.78 (s, 3H), 3.51 (t, J = 8.8 Hz, 1H), 3.34 (s, 3H), 2.42 (t, J = 7.0 Hz, 2H),
2.26 (dd, J =8.8, 5.3 Hz, 1H) 1.77 (dd, J = 9.4, 5.3 Hz, 1H), 1.60-1.56 (m, 2H), 1.50-1.45
(m, 2H), 0.95 (t, J = 7.0 Hz, 3H); **C NMR (100 MHz, CDCl3) & = 170.1, 167.2, 136.4,
131.7, 127.1, 126.6, 126.1, 95.9, 78.4, 52.6, 52.1, 36.7, 32.3, 30.7, 22.0, 19.3, 13.6; IR
(thin film, cm™) 2954, 2932, 2872, 1730, 1436, 1332, 1282, 1212, 1130, 756; HRMS (EI)
calc’d for C19H,04 314.1518, found 314.1517.

4.4.4 General Procedure and Spectral Data for Hemimalonates

R R
=Z =Z
CO,CHg 1.7MNaOH CO,CH3
CO,CH,4 MeOH CO,H

The general procedure for the saponification of compounds 4-10a-h was done using
standard basic conditions. Subjecting the alkyne-bearing cyclopropane diesters 14a-h, the
starting material (1 equivalent) was dissolved in methanol and 1.7 M NaOH was added
(1.7 equivalent). The reaction mixture was stirred at room temperature until completion
determined by TLC analysis. Once reaction was done, water was added and the reaction
was extracted with ethyl acetate. The aqueous layer was acidified and extracted 3 times
with ethyl acetate. The combined organic layer was washed with water and dried with

71

www.manaraa.com



MgSQ,, filtered and the solvent was removed. No further purification was needed,

yielding the desired cyclopropane hemimalonates 4-6a-h.

=

CO,CHs
CO,H

(2-ethynylphenyl)-1-(methoxycarbonyl)cyclopropanecarboxylic
acid (4-6a): Reagents employed: dimethyl 2-(2-
ethynylphenyl)cyclopropane-1,1-dicarboxylate  (4-9) (0.120 g,
0.465 mmol), 1.7 M NaOH (0.465 mL, 0.790 mmol), methanol: yield 88 % (0.100 mg,
0.409 mmol) to give a white solid; 'H NMR (400 MHz, CDCls) 6 = 7.44 (br d, J = 7.8
Hz, 1H), 7.34-7.30 (m, 1H), 7.26-7.22 (m, 2H), 3.51 (dd, J = 9.4, 9.0 Hz, 1H), 3.37 (s,
1H), 3.25 (s, 3H), 2.41-2.33 (m, 2H); **C NMR (100 MHz, CDCls) & = 173.9, 170.9,
137.5, 132.2, 128.7, 128.5, 127.7, 127.7, 83.6, 80.7, 52.6, 40.3, 33.1, 22.2; IR (thin film,
cm™) 3283, 3028, 2955, 1754, 1675, 1447, 1352, 1146, 759; HRMS (EI) calc’d for
C14H1304245.0814, found 245.0807 (M+H).

1-(methoxycarbonyl)-2-(2-(phenylethynyl)phenyl)
cyclopropanecarboxylic acid (4-6b): Reagents employed:
dimethyl 2-(2-(phenylethynyl)phenyl)cyclopropane-1,1-
dicarboxylate (4-10b) (0.075 g, 0.224 mmol), 1.7 M NaOH (0.230
mL, 0.381 mmol), methanol: yield 95 % (0.068 g, 0.212 mmol) to give a yellow oil; *H
NMR (400 MHz, CDClg) & = 7.52-7.48 (m, 3H), 7.34-7.30 (m, 3H), 7.28-7.22 (m, 3H),
3.60 (t, J = 9.0 Hz, 1H), 3.23 (s, 3H), 2.43-2.35 (m, 2H); **C NMR (100 MHz, CDCls) &
= 173.9, 170.6, 136.2, 131.9, 131.8, 131.6, 128.8, 128.6, 128.4, 128.0, 127.8, 122.5,
110.0, 95.7, 86.3, 52.6. 40.5, 33.2, 22.4; IR (thin film, cm™) 3060, 2922, 1757, 1675,
1443, 1216, 1146, 756, 691; HRMS (EI) calc’d for CyoH1604 320.1049, found 320.1046.
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1-(methoxycarbonyl)-2-(2-(naphthalen-1-ylethynyl)phenyl)
cyclopropanecarboxylic acid (4-6¢): Reagents employed:
dimethyl 2-(2-(naphthalen-1-ylethynyl)phenyl)cyclopropane-1,1-
dicarboxylate (4-10c) (0.175 g, 0.460 mmol), 1.7 M NaOH (0.460
mL, 0.770 mmol), methanol: yield 80 % (0.137 g, 0.370 mmol) to
give a yellow oil; *H NMR (600 MHz, CDCls) & = 8.37 (d, J =
8.8 Hz, 1H), 7.86 (t, J = 7.0 Hz, 2H), 7.80 (d, J = 7.0 Hz, 1H), 7.68 (br t, 1H), 7.61 (dd, J
=8.2, 7.0 Hz, 1H), 7.52 (dt, J = 22.3, 8.2, 7.0 Hz, 2H), 7.30-7.35 (m, 3H), 3.73 (t, J = 8.8
Hz, 1H), 3.30 (s, 3H), 2.50-2.48 (m, 1H), 2.45-2.43 (m, 1H); *C NMR (100 MHz,
CDCl3) 6 = 173.4, 171.0, 136.1, 133.1, 132.2, 131.0, 129.1, 128.8, 128.3, 128.0, 127.9,
126.8, 126.4, 126.0, 125.5, 125.4, 120.2, 93.6, 91.3, 52.6, 40.0, 33.6, 22.2; IR (thin film,
cm™) 3058, 2953, 2853, 1755, 1675, 1445, 1217, 1145, 755; HRMS (EI) calcd for
Ca4H1804 370.1205, found 370.1203.

2-(2-((2,4-dimethoxyphenyl)ethynyl)phenyl)-1-
(methoxycarbonyl)cyclopropanecarboxylic acid (4-6d):
Reagents employed: dimethyl 2-(2-((2,4
dimethoxyphenyl)ethynyl)phenyl) cyclopropane-1,1-
dicarboxylate (4-10d) (0.100 g, 0.250 mmol), 1.7 M NaOH
(0.250 mL, 0.430 mmol), methanol: yield 86 % (0.082 g, 0.216 mmol) to give a clear oil;
'H NMR (600 MHz, CDCl3) & = 7.54-7.52 (m, 1H), 7.44 (d, J = 8.2 Hz, 1H), 7.25-7.21
(m, 3H), 6.52 (dd, J = 8.2, 2.4 Hz, 1H), 6.46 (d, J = 2.4 Hz, 1H), 3.90 (s, 3H), 3.84 (s,
3H), 3.64 (t, J = 9.4 Hz, 1H), 3.27 (s, 3H), 2.47-2.40 (m, 2H); *C NMR (100 MHz,
CDCl3) 6 = 174.0, 170.3, 161.5, 135.9, 134.4, 131.8, 128.8, 127.6, 127.2, 125.6, 104.9,
104.5, 98.3, 89.1, 55.7, 55.4, 52.5, 40.5, 33.2, 22.3: IR (thin film, cm™) 2925, 2853, 2208,
1735, 1608, 1509, 1439, 1211, 1030; HRMS (EI) calc’d for C,,H2006 380.1260, found
380.1265.
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O,N 1-(methoxycarbonyl)-2-(2-((2-nitrophenyl)ethynyl)phenyl)

cyclopropanecarboxylic acid (4-6e): Reagents employed:

dimethyl 2-(2-((2-nitrophenyl)ethynyl)phenyl)cyclopropane-1,1-

CO,CH; .
CO,H dicarboxylate (4-10e) (0.060 g, 0.160 mmol), 1.7 M NaOH (0.160

mL, 0.270 mmol), methanol: yield 68 % (0.040 mg, 0.109 mmol)
to give a yellow oil; *H NMR (600 MHz, CDCls) & = 8.08 (d, J = 8.2 Hz, 1H), 7.73 (d, J
= 7.0 Hz, 1H), 7.65-7.60 (m, 2H), 7.47 (dd, J = 8.2, 7.6 Hz, 1H), 7.37-7.27 (m, 3H), 3.65
(dd, J = 9.4, 8.8 Hz, 1H), 3.28 (s, 3H), 2.46 (dd, J = 8.8, 4.7 Hz, 1H), 2.39 (dd, J = 9.4,
4.7 Hz, 1H); *C NMR (100 MHz, CDCls) & = 173.9, 170.3, 136.7, 134.8, 133.2, 132.7,
129.0, 128.8, 128.0, 124.7, 93.7, 90.5, 52.7, 40.3, 29.7, 22.3; IR (thin film, cm™) 3025,
2925, 2854, 2217, 1737, 1525, 1342, 1217, 1145, 746; HRMS (EI) calc’d for C;0H16NOg
366.0978, found 366.0973 (M+H).

1-(methoxycarbonyl)-2-(2-(quinolin-3-ylethynyl)phenyl)
cyclopropanecarboxylic acid (4-6f): Reagents employed:
dimethyl  2-(2-(quinolin-3-ylethynyl)phenyl)cyclopropane-1,1-
dicarboxylate (4-10f) (0.025 g, 0.065 mmol), 1.7 M NaOH
(0.065 mL, 0.111 mmol), methanol: yield 58% (0.014 g, 0.038
mmol) to give a yellow oil; *H-NMR (400 MHz, CDCls): § = 9.00 (br s, 1H), 8.37 (br s,
1H), 8.07 (br d, J = 8.2 Hz, 1H), 7.86 (br d, J = 8.2 Hz, 1H), 7.71 (br t, J = 7.6 Hz, 1H),
7.56 (dd, J = 8.6 Hz, 1H), 7.37 (t, J = 7.0 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 3.69 (t, J =
9.0 Hz, 1H), 3.30 (s, 3H), 2.48 (dd, J = 8.2, 4.7 Hz, 1H), 2.41-2.38 (m, 1H); *C NMR
(100 MHz, CDCl3) 6 = 172.7, 171.3, 138.2, 136.9, 133.2, 132.0, 129.0, 128.7, 128.4,
127.9, 127.8, 123.9, 123.4, 123.2, 113.9, 80.4, 80.2, 52.7, 39.1, 33.5, 21.9; IR (thin film,
cm™) 2923, 1958, 1731, 1445, 1333, 1217, 1141, 755; HRMS (EI) calc’d for C3H17NO,
371.1158, found 371.1169.
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1-(methoxycarbonyl)-2-(2-(thiophen-2-ylethynyl)phenyl)

cyclopropanecarboxylic acid (4-6g): Reagents employed:

CO,CH; dimethyl  2-(2-(thiophen-2-ylethynyl)phenyl)cyclopropane-1,1-
COzH  dicarboxylate (4-10g) (0.071 g, 0.210 mmol), 1.7 M NaOH (0.210
mL, 0.360 mmol), methanol: yield 75 % (0.051 mg, 0.157 mmol) to give a clear oil; *H
NMR (400 MHz, CDCl3) 6 =17.50 (d, J = 5.5 Hz, 1H), 7.37 (d, J = 3.5 Hz, 1H), 7.32-7.28
(m, 3H), 7.13 (br d, 1H), 7.03 (t, J = 4.7 Hz, 1H), 6.80 (br d, 1H), 3.59 (t, J = 9.0 Hz,
1H), 3.27 (s, 3H), 2.46-2.40 (m, 2H); *C NMR (100 MHz, CDCls) & = 173.7, 170.9,
136.1, 132.9, 132.6, 131.5, 129.2, 128.8, 127.9, 127.8, 127.3, 127.2, 90.0, 88.9, 52.6,
40.3, 3.2, 22.4; IR (thin film, cm™) 3105, 2953, 2201, 1753, 1447, 1216, 1147, 853, 755,

704; HRMS (EI) calcd for C1gH1404S 326.0613, found 326.0210.

= 2-(2-(hex-1-yn-1-yl)phenyl)-1-(methoxycarbonyl)

CO,CH;
COH  dimethyl-2-(2-(hex-1-yn-1-yl)phenyl) cyclopropane-1,1-

dicarboxylate (4-10h) (0.030 g, 0.100 mmol), 1.7 M NaOH
(0.100 mL, 0.160 mmol), methanol: yield 90 % (0.027 g, 0.090 mmol) to give a yellow
oil; *H-NMR (600 MHz, CDCl3) 8 = 7.36 (br d, J = 7.6 Hz, 1H), 7.24-7.19 (m, 3H), 3.48
(dd, J =9.4, 8.8 Hz, 1H), 3.24 (s, 3H), 2.43 (dd, J = 7.6, 7.0 Hz, 2H), 2.40-2.35 (m, 2H),
1.61-1.56 (m, 2H), 1.48-1.43 (m, 2H), 0.94 (dd, J = 7.6, 7.0 Hz, 3H); *C NMR (100
MHz, CDCl3) 6 =174.1, 170.8, 136.4, 131.5, 128.6, 127.6, 127.1, 125.7,97.4, 77.7, 52.5,
40.9, 33.1, 30.6, 29.7, 22.3, 22.1, 19.3, 13.6; IR (thin film, cm™) 2924, 2853, 1735, 1449,
1248, 755; HRMS (EI) calcd for C15H2004 300.1362, found 300.1350.

cyclopropanecarboxylic acid (4-6h): Reagents employed:
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4.45 General Procedure and Spectral Data for Triazoles

N
=N
NaNj (1.2 equivalent) R— |
S NH,CI (1.4 equivalent)) N COOCH;
\
R 2.MeOEtOH : H,0
COOCH; (10-1)
COOCH;

Cyclopropane hemimalonate (4-6a-h) (1 equivalent) was dissolved in a solution of 2-
methoxyethanol:water (10:1) and then sodium azide (NaN3z) (1.2 equivalent) and
ammonium chloride (NH4CI) (1.4 equivalent) were added. The mixture was heated to
reflux and monitored until completion by TLC analysis (1.5 — 2 h). The reaction mixture
was cooled to room temperature, and water was added. The reaction was extracted 3
times with ether. The organic layers were combined and dried with MgSQ,, filtered and
the solvent was removed. The residue was purified by flash column chromatography
(EtOAc/hexanes) to yield the desired triazole (4-8a-h).

\\E COCH, Methyl  3-(8H-[1,2,3]triazolo[5,1-a]isoindol-8-yl)propanoate
(4-8a): Reagents employed: 2-(2-ethynylphenyl)-1-
(methoxycarbonyl)cyclopropanecarboxylic acid (4-6a) (0.080 g,
0.328 mmol), NaN3 (0.026 g, 0.394 mmol), NH,CI (0.025 g,

0.459 mmol), 2-methoxyethanol/water: yield 80% (0.064 g, 0.263 mmol) as a clear oil; R¢

=0.12, 30% EtOAc in hexanes; *H NMR (600 MHz, CDCl3) & = 7.82 (s, 1H), 7.63 (d, J

= 7.0 Hz, 1H), 7.50-7.40 (m, 3H), 5.54 (dd, J = 7.8, 3.9 Hz, 1H), 3.64 (s, 3H), 2.81-2.73

(m, 1H), 2.60-2.52 (m, 1H), 2.47-2.40 (m, 1H), 2.29-2.20 (m, 1H); *C NMR (100 MHz,

CDCl3) 6 =172.8, 144.8, 129.1, 128.6, 127.1, 124.3, 123.8, 121.7, 61.9, 51.8, 28.8, 28.5;

IR (thin film, cm™) 3136, 3057, 2998, 2951, 2850, 1734, 1624, 1471, 1437, 1416, 1379,

1245, 1205, 1094; HRMS (EI) calc’d for C13H13N30, 243.1008, found 243.1006
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Methyl 3-(3-phenyl-8H-[1,2,3]triazolo[5,1-a]isoindol-
8-yl)propanoate (4-8b): Reagents employed: 1-
(methoxycarbonyl)-2-(2-(phenylethynyl)phenyl)
cyclopropanecarboxylic acid (4-6b) (0.046 g, 0.143
mmol), NaN3 (0.011 g, 0.172 mmol), NH,CI (0.013 g,
0.242 mmol), 2-methoxyethanol/water: yield 77% (0.035 g, 0.110 mmol) as a white
solid; R; = 0.17, 30% EtOAc in hexanes; *H NMR (600 MHz, CDCls) 6 = 7.96 (d, J =
7.04 Hz, 2H), 7.91 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 3H), 7.48 (t, J = 7.0 Hz, 1H),
7.45-7.40 (m, 2H), 5.58 (dd, J = 7.0, 4.1 Hz, 1H), 3.65 (s, 3H), 2.84-2.78 (m, 1H), 2.63-
2.58 (m, 1H), 2.50-2.45 (m, 1H), 2.34-2.28 (m, 1H); **C NMR (100 MHz, CDCls) ¢ =
172.9, 145.0, 133.9, 131.0, 129.1, 128.9, 128.5, 127.7, 127.6, 126.6, 126.2, 125.8, 125.4,
123.6, 122.1, 62.0, 51.9, 29.0, 28.8; IR (thin film, cm™) 3853, 3058, 2950, 2852, 1735,
1609, 1446, 1358, 1174; HRMS (EI) calc’d for C19H17N30, 319.1321, found 319.1324.

Methyl 3-(3-(naphthalen-1-yl)-8H-[1,2,3]triazolo[5,1-
aJisoindol-8-yl)propanoate (4-8c): Reagents
employed:  1-(methoxycarbonyl)-2-(2-(naphthalen-1-
ylethynyl)phenyl)cyclopropanecarboxylic acid (4-6c)
(0.021 g, 0.060 mmol), NaN3 (0.005 g, 0.070 mmol),
NH4CI (0.005 g, 0.080 mmol), 2-methoxyethanol/water: yield 72% (0.016 g, 0.043
mmol) as a clear oil; Ry = 0.17, 30% EtOAc in hexanes; *H NMR (400 MHz, CDCls) § =
8.18 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 8.20 Hz, 2H), 7.88 (br s, 1H), 7.64 (br s, 1H), 7.54
(dt, J=7.8,7.0 Hz, 3H), 7.40 (t, J = 7.4 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 5.64 (br s, 1H),
3.68 (s, 3H), 2.92-2.83 (br m, 1H), 2.76-2.68 (m, 1H), 2.62-2.54 (m, 1H), 2.42-2.33 (m,
1H); °C NMR (100 MHz, CDCls) § = 172.9, 145.0, 133.9, 131.0, 129.1, 128.9, 128.5,
127.7, 127.6, 126.6, 126.2, 125.8, 125.4, 123.6, 122.1, 62.0, 51.9, 29.0, 28.8; IR (thin
film, cm™) 2925, 2853, 1753, 1437, 1171, 778; HRMS (El) calc’d for CasHigN3O,
369.1477, found 369.1473.
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Methyl 3-(3-(2,4-dimethoxyphenyl)-8H
[1,2,3]triazolo[5,1-a]isoindol-8-yl)propanoate
(4-8d):  Reagents employed: 2-(2-((2,4

dimethoxyphenyl)ethynyl)phenyl)-1-

(methoxycarbonyl)cyclopropanecarboxylic acid
(4-6d) (0.021 g, 0.055 mmol), NaN; (0.005 g, 0.070 mmol), NH4CI (0.005 g, 0.080
mmol), 2-methoxyethanol/water: yield 73% (0.015 g, 0.040 mmol) as a clear oil; Rf =
0.10, 30% EtOAcC in hexanes; *H NMR (600 MHz, CDCl3) & = 7.78 (d, J = 8.2 Hz, 1H),
7.48 (t, J = 8.2 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 6.67 (dd, J =
8.2, 2.4 Hz, 1H), 6.62 (d, J = 2.4 Hz, 1H), 5.55 (dd, J = 7.6, 4.1 Hz, 1H), 3.89 (s, 3H),
3.83 (s, 3H), 3.65 (s, 3H), 2.87-2.77 (br m, 1H), 2.65-2.59 (m, 1H), 2.52-2.47 (m, 1H),
2.34-2.28 (m, 1H); *C NMR (100 MHz, CDCls) & = 173.0, 161.4, 157.4, 144.8, 139.1,
135.1, 131.2, 128.7, 127.7, 123.2, 113.3, 105.0, 98.6, 61.5, 55.5, 55.2, 51.8, 28.9, 28.7;
IR (thin film, cm™): 3445, 3001, 2924, 2850, 1735, 1617, 1580, 1509, 1454, 1308, 1210,
1161, 1117, 1032; HRMS (EI) calc’d for C,1H21N304 379.1532, found 379.1527.

NO,

Methyl  3-(3-(2-nitrophenyl)-8H-[1,2,3]triazolo[5,1-
CO.CH3;  alisoindol-8-yl)propanoate (4-8e): Reagents employed:
1-(methoxycarbonyl)-2-(2-((2-
nitrophenyl)ethynyl)phenyl)cyclopropanecarboxylic acid
(4-6e) (0.068 g, 0.190 mmol), NaN3 (0.015 g, 0.220 mmol), NH,CI (0.014 g, 0.260
mmol), 2-methoxyethanol/water: yield 61% (0.042 g, 0.115 mmol) as a clear oil; Rf =
0.12, 30% EtOAC in hexanes; *H NMR (600 MHz, CDCls5) & = 8.08 (d, J = 8.2 Hz,1H),
7.83 (d, J = 7.0 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.52 (d, J =
7.0 Hz, 1H), 7.44- 7.38 (m, 3H), 5.60 (g, J = 7.0, 3.5 Hz, 1H), 3.65 (s, 3H), 2.84-2.78 (br
m, 1H), 2.64-2.59 (m, 1H), 2.51-2.46 (m, 1H), 2.34-2.28 (m, 1H); *C NMR (100 MHz,
CDCl3) 6 = 172.9, 144.9, 133.0, 132.2, 129.4, 129.1, 128.9, 127.1, 124.9, 123.8, 121.5,
120.7, 119.6, 112.5, 62.1, 58.5, 29.7, 28.8, 28.6; IR (thin film, cm™) 2922, 2851, 1735,
1529, 1438, 1361, 754; HRMS (EI) calc’d for C19H16N404 364.1172, found 364.1166.
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Methyl 3-(3-(quinolin-3-yl)-8H-[1,2,3]triazolo[5,1-
aJisoindol-8-yl)propanoate (4-8f): Reagents used: 1

(methoxycarbonyl)-2-(2-(quinolin-3-
ylethynyl)phenyl)cyclopropanecarboxylic acid (4-6f)
(0.027 g, 0.073 mmol), NaN3 (0.006 g, 0.087 mmaol),
NH4CIl (0.006 g, 0.100 mmol), 2-methoxyethanol/water: yield 30% (0.008 g, 0.022
mmol) as a clear oil; Ry = 0.07, 30% EtOAc in hexanes; *H NMR (400 MHz, CDCl3) § =
9.52 (br s, 1H), 8.76 (br s, 1H), 8.20 (br d, 1H), 7.96 (d, J = 7.8 Hz, 2H), 7.79 (t, J = 7.4
Hz, 1H), 7.64 (t, J = 7.8 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H) 7.52 (t, J = 7.4 Hz, 2H), 5.66
(dd, J = 7.4, 3.9 Hz, 1H), 3.68 (s, 3H), 2.89-2.81 (br m, 1H), 2.70-2.62 (m, 1H), 2.56-
2.48 (m, 1H), 2.38-2.31 (m, 1H); *C NMR (100 MHz, CDCls3) & = 172.8, 149.2, 147.7,
145.1, 138.8, 136.3, 133.3, 129.8, 129.4, 129.3, 129.0, 128.1, 128.0, 127.3, 127.2, 124.6,
124.1, 121.3, 62.0, 51.9, 28.9, 28.6; IR (thin film, cm™) 3361, 2924, 2853, 2362, 1734,
1594, 1419, 1375, 1123, 1043; HRMS (EIl) calc’d for C,,H;sN4,O, 370.1430, found
370.1443.

| N {\I:E . M.etf?yl 3-(3-(thiophen-2-y|)-8l-—|-[1,2,3]triazo|o[5,1?
S 2CH3  alisoindol-8-yl)propanoate (4-8g): Reagents employed:
1-(methoxycarbonyl)-2-(2-(thiophen-2-
ylethynyl)phenyl)cyclopropanecarboxylic acid (4-69)
(0.035 g, 0.110 mmol), NaN3 (0.009 g, 0.130 mmol), NH4CI (0.008 g, 0.150 mmol), 2-
methoxyethanol/water: yield 39% (0.014 g, 0.043 mmol) as a clear oil; R = 0.22, 30%
EtOAc in hexanes; *H NMR (400 MHz, CDCls) & = 8.03 (d, J = 7.6 Hz,1H), 7.63 (t, J =
2.4 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.47-7.43 (m, 1H), 7.41 (d, J = 4.1 Hz,1H), 7.20-
7.18 (m, 1H), 5.58 (dd, J = 5.3, 3.5 Hz, 1H), 3.65 (s, 3H), 2.83-2.78 (br m, 1H), 2.62-2.56
(m, 1H), 2.48-2.43 (m, 1H), 2.33-2.29 (m, 1H); *C NMR (100 MHz, CDCls) 6 = 172.8,
144.8, 137.2, 133.9, 133.2, 129.1,128.6, 127.8, 127.2, 125.3, 125.1, 123.8, 121.6, 61.9,
51.8, 28.9, 28.5; IR (thin film, cm™) 3421, 2918, 2849, 2361, 2336, 1735, 1458, 1084;
HRMS (EI) calc’d for C17H15N30,S 325.0885 found 325.0877.
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Methyl 3-(3-butyl-8H-[1,2,3]triazolo[5,1-a]isoindol-

S CO,CH, 8-yl)propanoate (4-8h): Reagents employed: 2-(2-

(hex-1-yn-1-yl)phenyl)-1-(methoxycarbonyl)

cyclopropanecarboxylic acid (4-6h) (0.027 g, 0.089

mmol), NaN3 (0.007 g, 0.108 mmol), NH4CI (0.008 g,

0.151 mmol), 2-methoxyethanol/water: yield 53% (0.014 g, 0.047 mmol) as a clear oil; R¢

= 0.17, 30% EtOAc in hexanes; *"H NMR (400 MHz, CDCl3) § = 7.60 (d, J = 7.4 Hz,

1H), 7.46 (dd, J = 7.8, 7.4 Hz, 2H), 7.38 (dd, J = 7.8, 7.0 Hz, 1H), 5.48 (dd, J = 7.4, 4.3

Hz, 1H), 3.64 (s, 3H), 2.94 (t, J = 7.0 Hz, 2H), 2.80-2.71 (m, 1H), 2.58-2.50 (m, 1H),

2.46-2.38 (m, 1H), 2.29-2.20 (m, 1H), 1.83-1.76 (m, 1H), 1.49-1.40 (m, 1H), 0.97 (t, J =

6.3 Hz, 3H); *C NMR (100 MHz, CDCl3) 6 = 163.3, 154.7, 129.0, 127.8, 123.8, 120.8,

93.2, 61.7, 51.8, 31.7, 28.9, 28.5, 25.6, 22.4, 13.9; IR (thin film, cm™) 2954, 2925, 2854,

1737, 1457, 1437, 1378, 1170, 767; HRMS (EI) calcd for C17H21N30, was 299.1634,
found 299.1632.
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5  Summary of Thesis

This body of work explored some of the potential uses of DA cyclopropanes in organic
synthesis. Today, there are numerous reviews' on various aspects of cyclopropanes, and
continued research should be done on these DA cyclopropanes, as they continue to

succeed in organic synthesis in a wide variety of reactions.

Although the actual DA cyclopropanes investigated throughout this body of work were
not the same substrate for each investigation, all DA cyclopropanes used served the same
purpose; that is to determine the vast scope of reactions that DA cyclopropanes can be
applied too. Firstly, the Overman rearrangement was done using an acetimidate DA
cyclopropane, and although this reaction saw some success, it was not enough to make it
a candidate for further exploration into this rearrangement.

The following two projects described in this thesis employed the use of an acetylene
bearing DA cyclopropane. This cyclopropane was initially investigated in the annulation
and Conia-ene reactions. This unique DA cyclopropane had the ability to react via
nucleophilic ring-opening as well as undergo further intramolecular reactions to form the
annulation and Conia-ene products. The success from these two projects could be further
explored with exploration of different substrates as nucleophiles; however for this body

of work these reactions were no longer explored.

Finally, using the acetylene bearing DA cyclopropane, success came in the form of 1,2,3-
triazole compounds.® This project required the synthesis of the hemimalonate
cyclopropanes, and it allowed for the success of the three transformations in one-pot with
the use of no metal-catalysts. These newly formed linearly fused tricyclic triazoles could
potentially be biologically active, and the synthetic handle containing the ester
functionality could be functionalized to a variety of amino acids, peptides, proteins and
possibly DNA.?> This multi-step reaction sequence provided excellent proof to the

chemistry community how valuable and versatile DA cyclopropanes really are.
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Appendix 1: *H and *C NMR Spectra for Chapter 2
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Appendix 2: *H and *C NMR Spectra for Chapter 3
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Appendix 3: 'H and *C NMR Spectra for Chapter 4
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